Eigenvalue problem and integro-differential inequalities

Author(s):  
Mikhail Borsuk
Author(s):  
Damian Wiśniewski ◽  
Mariusz Bodzioch

AbstractWe consider the eigenvalue problem for the p(x)-Laplace-Beltrami operator on the unit sphere. We prove same integro-differential inequalities related to the smallest positive eigenvalue of this problem.


2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


2018 ◽  
Vol 2018 (1) ◽  
pp. 146-154
Author(s):  
D.G. Rakhimov ◽  
◽  
Sh.M. Suyarov ◽  

Sign in / Sign up

Export Citation Format

Share Document