On Stochastic Ergodic Control in Infinite Dimensions

Author(s):  
Beniamin Goldys ◽  
Bohdan Maslowski
Author(s):  
Ari Arapostathis ◽  
Vivek S. Borkar ◽  
Mrinal K. Ghosh

2021 ◽  
Vol 58 (1) ◽  
pp. 1-21
Author(s):  
Harto Saarinen ◽  
Jukka Lempa

AbstractWe study an ergodic singular control problem with constraint of a regular one-dimensional linear diffusion. The constraint allows the agent to control the diffusion only at the jump times of an independent Poisson process. Under relatively weak assumptions, we characterize the optimal solution as an impulse-type control policy, where it is optimal to exert the exact amount of control needed to push the process to a unique threshold. Moreover, we discuss the connection of the present problem to ergodic singular control problems, and illustrate the results with different well-known cost and diffusion structures.


Author(s):  
Paweł Wójcik

AbstractWe observe that every map between finite-dimensional normed spaces of the same dimension that respects fixed semi-inner products must be automatically a linear isometry. Moreover, we construct a uniformly smooth renorming of the Hilbert space $$\ell _2$$ ℓ 2 and a continuous injection acting thereon that respects the semi-inner products, yet it is non-linear. This demonstrates that there is no immediate extension of the former result to infinite dimensions, even under an extra assumption of uniform smoothness.


Author(s):  
Nawaf Bou-Rabee ◽  
Andreas Eberle

A Correction to this paper has been published: 10.1007/s40072-020-00175-6


2019 ◽  
Vol 374 (2) ◽  
pp. 823-871 ◽  
Author(s):  
Simon Becker ◽  
Nilanjana Datta

Abstract By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite dimensions, which are stronger than previously known bounds. We extensively discuss applications of our theory to quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.


Sign in / Sign up

Export Citation Format

Share Document