A Viscoelastic Relaxation Model for Post-Seismic Deformation from the San Francisco Earthquake of 1906

1977 ◽  
pp. 401-411 ◽  
Author(s):  
John B. Rundle ◽  
David D. Jackson
2020 ◽  
Author(s):  
Yuting Ji ◽  
Wenke Sun ◽  
He Tang

<p>Viscoelastic relaxation is generally considered as the dominant process of the long-term post-seismic deformation, while viscoelastic characteristic relaxation time represents the time scale of deformation caused by viscoelastic relaxation effect after the earthquake. The subduction earthquakes which occurred at the boundary of the ocean and continental plates often release greater stress, and the stress relaxation of mantle materials is more significant due to the response to viscoelasticity. Satellite gravity mission GRACE (gravity recovery and climate experience) is able to observe the corresponding co-seismic and post-seismic gravity changes. Therefore, in this study, we use the monthly gravity field model data of GRACE RL06 to study the post-seismic gravity changes of 2011 Tohoku earthquake and 2004 Sumatra earthquake. After removing the influence of sea level changes, GIA changes and GLDAS on the seasonal precipitation changes in the land area, as well as the sea water correction, we get the post-seismic deformation only related to the deformation of the solid earth. Then we use the attenuation function to fit each grid value and obtain the spatial distribution of viscoelastic characteristic relaxation time after rejecting the afterslip from the total post-seismic deformation. Thus,we can capture  the viscous structure in the subduction area.</p>


2013 ◽  
Vol 196 (1) ◽  
pp. 218-229 ◽  
Author(s):  
Faqi Diao ◽  
Xiong Xiong ◽  
Rongjiang Wang ◽  
Yong Zheng ◽  
Thomas R. Walter ◽  
...  

Author(s):  
Tai Liu ◽  
Guangyu Fu ◽  
Yawen She ◽  
He Tang

Summary The present study introduces a novel method for computing post-seismic crustal internal deformation in a layered earth model. The surface dislocation Love number (DLN) calculated by the reciprocity theorem was implemented as the initial value. Furthermore, numerical integration of the value from the Earth's surface to the interior was undertaken to obtain the internal DLN. This method does not require a combination of the general solution and particular solution for the calculation of internal deformation above the seismic source, thus avoiding the loss of precision. When the post-seismic deformation within a certain period is calculated, the particular solutions at the beginning and end of the considered period cancel each other. This simplifies the calculation of post-seismic internal deformation. The numerical results depict that as the degrees increase, the post-seismic DLN reaches stability in a shorter interval of time. Thus, for improved efficiency of the post-seismic internal deformation calculation, the post-seismic DLNs should be calculated within 2000 degree and integrated with the co-seismic results. As an application, the post-seismic Coulomb failure stress changes (ΔCFS) induced by the 2011 Tohoku-Oki earthquake in the near field around the Japanese archipelagos and two major faults in Northeast China were simulated. The results exhibit that the ΔCFS values in the near field agree well with those simulated by the method in a half-space layered earth model, thus verifying the present method. The co-seismic ΔCFS on the Mishan-Dunhua fault in Northeast China, as an example, is only 0.094–0.668 KPa. However, the ΔCFS caused by the viscoelastic relaxation of the mantle within 5 years following the 2011 Tohoku-Oki event on the same fault exceeds the co-seismic results. Therefore, the cumulative effect of the viscoelastic relaxation of the mantle is deserving of attention.


Sign in / Sign up

Export Citation Format

Share Document