internal deformation
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 45)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 40 (12) ◽  
pp. 914-922
Author(s):  
Darwin Mateus Tarazona ◽  
Jorge Alonso Prieto ◽  
William Murphy ◽  
Julian Naranjo Vesga

Submarine landslides can be triggered by several processes and involve a variety of mechanisms. These phenomena are important sediment transport processes, but they also constitute a significant geohazard. Mapping of the southwestern Caribbean Sea using 3D seismic data has allowed identification of several submarine landslides in the Colombian Margin in the area dominated by the Southern Sinú Fold Belt (SSFB). A poststack depth-migrated seismic cube survey with a 12.5 by 12.5 m bin spacing was used to identify landslides in an area covering 5746 km2. Landslides were interpreted using a seafloor morphologic parameter identification process and the internal deformation of the slope-forming material, as seen from seismic data. A total of 93 landslides were identified and classified based on their movement styles as follows: 52 rotational, 29 translational, and 12 complex landslides. In addition, 12 distinct deformational zones and a zone of mass transport complex (MTC) were identified. Five different ground condition terrains were interpreted based on landslide type and distribution as well as in geologic structures and seismic reflection analysis. Two main processes seem to influence landslides in the study area. First is the folding and faulting involved in the SSFB evolution. This process results in oversteepened slopes that start as deformational zones and then fail as translational or rotational slides. Those individual landslides progressively become complex landslide zones that follow geologic structural orientation. Second is the continental shelf break erosion by debris flows, which fills in intraslope subbasins and continental rise with several MTCs. According to the results, risk of damage by landslides increases in distances shorter than 4 km along structural ridge foothills in the study zone.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5897
Author(s):  
Matej Borovinsek ◽  
Petr Koudelka ◽  
Jan Sleichrt ◽  
Michal Vopalensky ◽  
Ivana Kumpova ◽  
...  

Advanced pore morphology (APM) foam elements are almost spherical foam elements with a solid outer shell and a porous internal structure mainly used in applications with compressive loading. To determine how the deformation of the internal structure and its changes during compression are related to its mechanical response, in-situ time-resolved X-ray computed microtomography experiments were performed, where the APM foam elements were 3D scanned during a loading procedure. Simultaneously applying mechanical loading and radiographical imaging enabled new insights into the deformation behaviour of the APM foam samples when the mechanical response was correlated with the internal deformation of the samples. It was found that the highest stiffness of the APM elements is reached before the appearance of the first shear band. After this point, the stiffness of the APM element reduces up to the point of the first self-contact between the internal pore walls, increasing the sample stiffness towards the densification region.


2021 ◽  
Vol 48 (9) ◽  
Author(s):  
Ulrich Faul

AbstractDislocations, linear defects in a crystalline lattice characterized by their slip systems, can provide a record of grain internal deformation. Comprehensive examination of this record has been limited by intrinsic limitations of the observational methods. Transmission electron microscopy reveals individual dislocations, but images only a few square $$\upmu$$ μ m of sample. Oxidative decoration requires involved sample preparation and has uncertainties in detection of all dislocations and their types. The possibility of mapping dislocation density and slip systems by conventional (Hough-transform based) EBSD is investigated here with naturally and experimentally deformed San Carlos olivine single crystals. Geometry and dislocation structures of crystals deformed in orientations designed to activate particular slip systems were previously analyzed by TEM and oxidative decoration. A curvature tensor is calculated from changes in orientation of the crystal lattice, which is inverted to calculate density of geometrically necessary dislocations with the Matlab Toolbox MTEX. Densities of individual dislocation types along with misorientation axes are compared to orientation change measured on the deformed crystals. After filtering (denoising), noise floor and calculated dislocation densities are comparable to those reported from high resolution EBSD mapping. For samples deformed in [110]c and [011]c orientations EBSD mapping confirms [100](010) and [001](010), respectively, as the dominant slip systems. EBSD mapping thus enables relatively efficient observation of dislocation structures associated with intracrystalline deformation, both distributed, and localized at sub-boundaries, over substantially larger areas than has previously been possible. This will enable mapping of dislocation structures in both naturally and experimentally deformed polycrystals, with potentially new insights into deformation processes in Earth’s upper mantle.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 223
Author(s):  
Massimo Sferza ◽  
Jelena Ninić ◽  
Dimitrios Chronopoulos ◽  
Florian Glock ◽  
Fernass Daoud

The design optimisation of aerostructures is largely based on Multidisciplinary Design Optimisation (MDO), which is a set of tools used by the aircraft industry to size primary structures: wings, large portions of the fuselage or even an entire aircraft. The procedure is computationally expensive, as it must account for several thousands of loadcases, multiple analyses with hundreds of thousands of degrees of freedom, thousands of design variables and millions of constraints. Because of this, the coarse Global Finite Element Model (GFEM), on which the procedure is based, cannot be further refined. The structures represented in the GFEM contain many components and non-regular areas, which require a detailed modelling to capture their complex mechanical behaviour. Instead, in the GFEM, these components are represented by simplified models with approximated stiffness, whose main role is to contribute to the identification of the load paths over the whole structure. Therefore, these parts are kept fixed and are not constrained during the optimisation, as the description of their internal deformation is not sufficiently accurate. In this paper, we show that it would nevertheless be desirable to size the non-regular areas and the overall structures at once. Firstly, we introduce the concept of non-regular areas in the context of a structural airframe MDO. Secondly, we present a literature survey on MDO with a critical review of several architectures and their current applications to aircraft design optimisation. Then, we analyse and demonstrate with examples the possible consequences of neglecting non-regular areas when MDO is applied. In the conclusion, we analyse the requirements for alternative approaches and why the current ones are not viable solutions. Lastly, we discuss which characteristics of the problem could be exploited to contain the computational cost.


2021 ◽  
Author(s):  
Risa Hayashi ◽  
Koichi Miyazaki ◽  
Seishin Takao ◽  
Kohei Yokokawa ◽  
Sodai Tanaka ◽  
...  

Author(s):  
Tai Liu ◽  
Guangyu Fu ◽  
Yawen She ◽  
He Tang

Summary The present study introduces a novel method for computing post-seismic crustal internal deformation in a layered earth model. The surface dislocation Love number (DLN) calculated by the reciprocity theorem was implemented as the initial value. Furthermore, numerical integration of the value from the Earth's surface to the interior was undertaken to obtain the internal DLN. This method does not require a combination of the general solution and particular solution for the calculation of internal deformation above the seismic source, thus avoiding the loss of precision. When the post-seismic deformation within a certain period is calculated, the particular solutions at the beginning and end of the considered period cancel each other. This simplifies the calculation of post-seismic internal deformation. The numerical results depict that as the degrees increase, the post-seismic DLN reaches stability in a shorter interval of time. Thus, for improved efficiency of the post-seismic internal deformation calculation, the post-seismic DLNs should be calculated within 2000 degree and integrated with the co-seismic results. As an application, the post-seismic Coulomb failure stress changes (ΔCFS) induced by the 2011 Tohoku-Oki earthquake in the near field around the Japanese archipelagos and two major faults in Northeast China were simulated. The results exhibit that the ΔCFS values in the near field agree well with those simulated by the method in a half-space layered earth model, thus verifying the present method. The co-seismic ΔCFS on the Mishan-Dunhua fault in Northeast China, as an example, is only 0.094–0.668 KPa. However, the ΔCFS caused by the viscoelastic relaxation of the mantle within 5 years following the 2011 Tohoku-Oki event on the same fault exceeds the co-seismic results. Therefore, the cumulative effect of the viscoelastic relaxation of the mantle is deserving of attention.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110169
Author(s):  
Usiel S Silva-Rivera ◽  
Luis Adrian Zúñiga-Avilés ◽  
Adriana H Vilchis-González ◽  
Pedro A Tamayo-Meza ◽  
Wilbert David Wong-Angel

As a parameter important ballistic, the research about polygonal and grooved barrels’ behavior has not been widely carried out. The pressures, velocities, stresses, deformations, and strains generated by the firing of 9 mm × 19 mm ammunition in weapons with polygonal barrels are analyzed numerically and experimentally, compared with those generated in pistols with grooved barrels. The Finite Element Method with equal boundary and loading conditions was used in both types of guns, specifying the actual materials of the projectile and the barrels. Subsequently, experimental tests were carried out on various weapons with 9 mm ammunitions of 115, 122, and 124 gr. The results show that the 9 mm bullet fired in a polygonal barrel undergoes a maximum deformation towards its exterior of 0.178 mm and interior of 0.158 mm, with stress up to 295.85 MPa. Compared with 0.025 mm maximum external deformation and 0.112 mm internal deformation of 9 mm projectiles fired in a grooved barrel, with stress up to 269.79 MPa. The deformation in the polygonal barrel is in a greater area, but the rifling impression left is less deep, making its identification more difficult. Although there are differences in the stresses and strains obtained, similar velocity and pressure parameters are achieved in the two types of barrels. This has application in the development and standardization of new kinds of barrels and weapons.


Sign in / Sign up

Export Citation Format

Share Document