1997 ◽  
Vol 61 (1) ◽  
pp. 1-43 ◽  
Author(s):  
V I Burenkov ◽  
A L Gorbunov

Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter presents a selection of some of the most important results in the theory of Sobolev spacesn. Special emphasis is placed on embedding theorems and the question as to whether an embedding map is compact or not. Some results concerning the k-set contraction nature of certain embedding maps are given, for both bounded and unbounded space domains: also the approximation numbers of embedding maps are estimated and these estimates used to classify the embeddings.


2020 ◽  
Vol 10 (1) ◽  
pp. 450-476
Author(s):  
Radu Ioan Boţ ◽  
Sorin-Mihai Grad ◽  
Dennis Meier ◽  
Mathias Staudigl

Abstract In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskiĭ-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.


Sign in / Sign up

Export Citation Format

Share Document