monotone inclusion
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 33)

H-INDEX

8
(FIVE YEARS 3)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2415
Author(s):  
Jinjian Chen ◽  
Xingyu Luo ◽  
Yuchao Tang ◽  
Qiaoli Dong

This work proposes two different primal-dual splitting algorithms for solving structured monotone inclusion containing a cocoercive operator and the parallel-sum of maximally monotone operators. In particular, the parallel-sum is symmetry. The proposed primal-dual splitting algorithms are derived from two approaches: One is the preconditioned forward–backward splitting algorithm, and the other is the forward–backward–half-forward splitting algorithm. Both algorithms have a simple calculation framework. In particular, the single-valued operators are processed via explicit steps, while the set-valued operators are computed by their resolvents. Numerical experiments on constrained image denoising problems are presented to show the performance of the proposed algorithms.


Author(s):  
Pontus Giselsson ◽  
Walaa M. Moursi

AbstractMany iterative optimization algorithms involve compositions of special cases of Lipschitz continuous operators, namely firmly nonexpansive, averaged, and nonexpansive operators. The structure and properties of the compositions are of particular importance in the proofs of convergence of such algorithms. In this paper, we systematically study the compositions of further special cases of Lipschitz continuous operators. Applications of our results include compositions of scaled conically nonexpansive mappings, as well as the Douglas–Rachford and forward–backward operators, when applied to solve certain structured monotone inclusion and optimization problems. Several examples illustrate and tighten our conclusions.


Author(s):  
J. N. Ezeora ◽  
◽  
F. E. Bazuaye

In this paper, we propose an iterative algorithm for finding solution of split feasibility problem involving a λ−strictly pseudo-nonspreading map and asymptotically nonexpansive semigroups in two real Hilbert spaces. We prove weak and strong convergence theorems using the sequence obtained from the proposed algorithm. Finally, we applied our result to solve a monotone inclusion problem and present a numerical example to support our result.


Author(s):  
E. M. Bednarczuk ◽  
R. N. Dhara ◽  
K. E. Rutkowski

AbstractWe introduce a dynamical system to the problem of finding zeros of the sum of two maximally monotone operators. We investigate the existence, uniqueness and extendability of solutions to this dynamical system in a Hilbert space. We prove that the trajectories of the proposed dynamical system converge strongly to a primal–dual solution of the considered problem. Under explicit time discretization of the dynamical system we obtain the best approximation algorithm for solving coupled monotone inclusion problem.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1104
Author(s):  
Nattakarn Kaewyong ◽  
Kanokwan Sitthithakerngkiet

In this paper, we study a monotone inclusion problem in the framework of Hilbert spaces. (1) We introduce a new modified Tseng’s method that combines inertial and viscosity techniques. Our aim is to obtain an algorithm with better performance that can be applied to a broader class of mappings. (2) We prove a strong convergence theorem to approximate a solution to the monotone inclusion problem under some mild conditions. (3) We present a modified version of the proposed iterative scheme for solving convex minimization problems. (4) We present numerical examples that satisfy the image restoration problem and illustrate our proposed algorithm’s computational performance.


2021 ◽  
Vol 40 (2) ◽  
pp. 525-559
Author(s):  
Chinedu Izuchukwu ◽  
Godwin C. Ugwunnadi ◽  
Oluwatosin Temitope Mewomo

In this paper, we introduce a modified Ishikawa-type proximal point algorithm for approximating a common solution of minimization problem, monotone inclusion problem and fixed point problem. We obtain a strong convergence of the proposed algorithm to a common solution of finite family of minimization problem, finite family of monotone inclusion problem and fixed point problem for asymptotically demicontractive mapping in Hadamard spaces. Numerical example is given to illustrate the applicability of our main result. Our results complement and extend some recent results in literature.


Sign in / Sign up

Export Citation Format

Share Document