Radiation Theory

Author(s):  
Joseph Agassi
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Souma Jinno ◽  
Shuji Kitora ◽  
Hiroshi Toki ◽  
Masayuki Abe

AbstractWe formulate a numerical method on the transmission and radiation theory of three-dimensional conductors starting from the Maxwell equations in the time domain. We include the delay effect in the integral equations for the scalar and vector potentials rigorously, which is vital to obtain numerically stable solutions for transmission and radiation phenomena in conductors. We provide a formalism to connect the conductors to any passive lumped-parameter circuits. We show one example of numerical calculations, demonstrating that the new formalism provides stable solutions to the transmission and radiation phenomena.


1977 ◽  
Vol 16 (5) ◽  
pp. 2055-2067 ◽  
Author(s):  
O. Theimer ◽  
P. R. Peterson
Keyword(s):  

1992 ◽  
Vol 5 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Antonio V. Barranco ◽  
Humberto M. Fran�a
Keyword(s):  

2013 ◽  
Vol 54 (62) ◽  
pp. 97-104 ◽  
Author(s):  
Chengyu Liu ◽  
Wei Gu ◽  
Jinlong Chao ◽  
Lantao Li ◽  
Shuai Yuan ◽  
...  

AbstractTo investigate the spatio-temporal characteristics of sea-ice resource, we used sea-ice volume to measure the amount of sea-ice resource in the Bohai Sea, China. The sea-ice area was extracted from Advanced Very High Resolution Radiometer (AVHRR) remote-sensing images using the zonal threshold method. The sea-ice thickness was estimated using a sea-ice model based on shortwave radiation theory and field measurements. The spatio-temporal characteristics of sea-ice volume were then analysed using GIS technology. The results indicate that the Bohai Sea experienced two sea-ice volume peaks in winter 2009/10. The largest sea-ice volume was in Liaodong Bay (∼80.26% of the entire sea-ice volume of the Bohai Sea). Bohai Bay had the second largest ice volume, and Laizhou Bay the smallest. The relationship between sea-ice volume and distance from shore is essentially exponential. The proportion of total sea-ice volume that is 0–10 km from shore is ∼42.43%, whereas the proportion that is 100–110 km from shore is only 0.002%.


Sign in / Sign up

Export Citation Format

Share Document