Generic vanishing theorems [26], [14]

1992 ◽  
pp. 137-146
Author(s):  
Hélène Esnault ◽  
Eckart Viehweg
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Magdalena Larfors ◽  
Matthew Magill ◽  
Robin Schneider

Abstract Heterotic compactifications on Calabi-Yau threefolds frequently exhibit textures of vanishing Yukawa couplings in their low energy description. The vanishing of these couplings is often not enforced by any obvious symmetry and appears to be topological in nature. Recent results used differential geometric methods to explain the origin of some of this structure [1, 2]. A vanishing theorem was given which showed that the effect could be attributed, in part, to the embedding of the Calabi-Yau manifolds of interest inside higher dimensional ambient spaces, if the gauge bundles involved descended from vector bundles on those larger manifolds. In this paper, we utilize an algebro-geometric approach to provide an alternative derivation of some of these results, and are thus able to generalize them to a much wider arena than has been considered before. For example, we consider cases where the vector bundles of interest do not descend from bundles on the ambient space. In such a manner we are able to highlight the ubiquity with which textures of vanishing Yukawa couplings can be expected to arise in heterotic compactifications, with multiple different constraints arising from a plethora of different geometric features associated to the gauge bundle.


Author(s):  
Yongqiang Liu ◽  
Laurentiu Maxim ◽  
Botong Wang

Abstract We use the non-proper Morse theory of Palais–Smale to investigate the topology of smooth closed subvarieties of complex semi-abelian varieties and that of their infinite cyclic covers. As main applications, we obtain the finite generation (except in the middle degree) of the corresponding integral Alexander modules as well as the signed Euler characteristic property and generic vanishing for rank-one local systems on such subvarieties. Furthermore, we give a more conceptual (topological) interpretation of the signed Euler characteristic property in terms of vanishing of Novikov homology. As a byproduct, we prove a generic vanishing result for the $L^2$-Betti numbers of very affine manifolds. Our methods also recast June Huh’s extension of Varchenko’s conjecture to very affine manifolds and provide a generalization of this result in the context of smooth closed sub-varieties of semi-abelian varieties.


2017 ◽  
Vol 21 (4) ◽  
pp. 2419-2460 ◽  
Author(s):  
Giuseppe Pareschi ◽  
Mihnea Popa ◽  
Christian Schnell

1985 ◽  
Vol 52 (1) ◽  
pp. 273-279 ◽  
Author(s):  
Kensho Takegoshi
Keyword(s):  

2017 ◽  
Vol 24 (1) ◽  
pp. 63-84 ◽  
Author(s):  
Bhargav Bhatt ◽  
Christian Schnell ◽  
Peter Scholze

Author(s):  
Bernard Shiffman ◽  
Andrew John Sommese
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document