complex flag
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1013
Author(s):  
Vahagn Abgaryan ◽  
Arsen Khvedelidze

A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary N-level quantum system is proposed. The method is based on the reformulation of the Stratonovich–Weyl correspondence in the form of algebraic “master equations” for the spectrum of the Stratonovich–Weyl kernel. The later implements a map between the operators in the Hilbert space and the functions in the phase space identified by the complex flag manifold. The non-uniqueness of the solutions to the master equations leads to diversity among the Wigner quasiprobability distributions. It is shown that among all possible Stratonovich–Weyl kernels for a N=(2j+1)-level system, one can always identify the representative that realizes the so-called SU(2)-symmetric spin-j symbol correspondence. The method is exemplified by considering the Wigner functions of a single qubit and a single qutrit.



Author(s):  
S. Marini ◽  
C. Medori ◽  
M. Nacinovich

AbstractWe investigate the nondegeneracy of higher order Levi forms on weakly nondegenerate homogeneous CR manifolds. Improving previous results, we prove that general orbits of real forms in complex flag manifolds have order less or equal than 3 and the compact ones less or equal 2. Finally we construct by Lie extensions weakly nondegenerate CR vector bundles with arbitrary orders of nondegeneracy.



2019 ◽  
Vol 527 ◽  
pp. 109-135 ◽  
Author(s):  
Eder M. Correa ◽  
Lino Grama


10.37236/3659 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Karola Mészáros ◽  
Greta Panova ◽  
Alexander Postnikov

We study multiplication of any Schubert polynomial $\mathfrak{S}_w$ by a Schur polynomial $s_{\lambda}$ (the Schubert polynomial of a Grassmannian permutation) and the expansion of this product in the ring of Schubert polynomials. We derive explicit nonnegative combinatorial expressions for the expansion coefficients for certain special partitions $\lambda$, including hooks and the $2\times 2$ box. We also prove combinatorially the existence of such nonnegative expansion when the Young diagram of $\lambda$ is a hook plus a box at the $(2,2)$ corner. We achieve this by evaluating Schubert polynomials at the Dunkl elements of the Fomin-Kirillov algebra and proving special cases of the nonnegativity conjecture of Fomin and Kirillov.This approach works in the more general setup of the (small) quantum cohomology ring of the complex flag manifold and the corresponding (3-point) Gromov-Witten invariants. We provide an algebro-combinatorial proof of the nonnegativity of the Gromov-Witten invariants in these cases, and present combinatorial expressions for these coefficients.



2013 ◽  
Vol 104 (1) ◽  
pp. 1-9
Author(s):  
Deborah Olayide A. Ajayi ◽  
Augustin Banyaga


Author(s):  
Altomani Andrea ◽  
Medori Costantino ◽  
Nacinovich Mauro


Author(s):  
Augustin-Liviu Mare ◽  
Matthieu Willems

AbstractWe consider the manifold Fln(ℍ) = Sp(n)/Sp(1)n of all complete flags in ℍn, where ℍ is the skew-field of quaternions. We study its equivariant complex K-theory rings with respect to the action of two groups: Sp(1)n and a certain canonical subgroup T = (S1)n (a maximal torus). For the first group action we obtain a Goresky-Kottwitz-MacPherson type description. For the second one, we describe the ring KT(Fln(ℍ)) as a subring of KT(Sp(n)/T). This ring is well known, since Sp(n)/T is a complex flag variety.



Sign in / Sign up

Export Citation Format

Share Document