The dynamin-cortactin complex as a mediator of vesicle formation at the trans-Golgi network

2009 ◽  
pp. 301-313
Author(s):  
Shaun Weller ◽  
Hong Cao ◽  
Mark A. McNiven
2017 ◽  
Vol 216 (7) ◽  
pp. 1887-1889 ◽  
Author(s):  
Jakob B. Sørensen

The functions of four of the five proteins in the mammalian uncoordinated-13 (Munc13) family have been identified as priming factors in SNARE-dependent exocytosis. In this issue, Zhang et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201702099) show that the fifth member, BAIAP3 (brain-specific angiogenesis inhibitor I–associated protein 3), acts in retrograde trafficking by returning secretory vesicle material to the trans-Golgi network. In its absence, secretory vesicle formation is impaired, leading to accumulation of immature vesicles, or lysosomal vesicle degradation.


2001 ◽  
Vol 114 (19) ◽  
pp. 3413-3418 ◽  
Author(s):  
Annette L. Boman

The GGA proteins are a novel family of proteins that were discovered nearly simultaneously by several labs studying very different aspects of membrane trafficking. Since then, several studies have described the GGA proteins and their functions in yeast and mammalian cells. Four protein domains are present in all GGA proteins, as defined by sequence homology and function. These different domains interact directly with ARF proteins, cargo and clathrin. Alteration of the levels of GGA proteins by gene knockout or overexpression affects specific trafficking events between the trans-Golgi network and endosomes. These data suggest that GGAs function as ARF-dependent, monomeric clathrin adaptors to facilitate cargo sorting and vesicle formation at the trans-Golgi network.


2019 ◽  
Vol 30 (8) ◽  
pp. 1008-1019 ◽  
Author(s):  
Yan-Ting Chen ◽  
I-Hao Wang ◽  
Yi-Hsun Wang ◽  
Wan-Yun Chiu ◽  
Jen-Hao Hu ◽  
...  

The Arf and Rab/Ypt GTPases coordinately regulate membrane traffic and organelle structure by regulating vesicle formation and fusion. Ample evidence has indicated that proteins in these two families may function in parallel or complementarily; however, the manner in which Arf and Rab/Ypt proteins perform interchangeable functions remains unclear. In this study, we report that a Golgi-localized Arf, Arl1, could suppress Ypt6 dysfunction via its effector golgin, Imh1, but not via the lipid flippase Drs2. Ypt6 is critical for the retrograde transport of vesicles from endosomes to the trans-Golgi network (TGN), and its mutation leads to severe protein mislocalization and growth defects. We first overexpress the components of the Arl3-Syt1-Arl1-Imh1 cascade and show that only Arl1 and Imh1 can restore endosome-to-TGN trafficking in ypt6-deleted cells. Interestingly, increased abundance of Arl1 or Imh1 restores localization of the tethering factor Golgi associated retrograde–protein (GARP) complex to the TGN in the absence of Ypt6. We further show that the N-terminal domain of Imh1 is critical for restoring GARP localization and endosome-to-TGN transport in ypt6-deleted cells. Together, our results reveal the mechanism by which Arl1-Imh1 facilitates the recruitment of GARP to the TGN and compensates for the endosome-to-TGN trafficking defects in dysfunctional Ypt6 conditions.


1997 ◽  
Vol 94 (8) ◽  
pp. 3748-3752 ◽  
Author(s):  
H. Xu ◽  
D. Sweeney ◽  
R. Wang ◽  
G. Thinakaran ◽  
A. C. Y. Lo ◽  
...  

2006 ◽  
Vol 119 (8) ◽  
pp. 1504-1516 ◽  
Author(s):  
Michael M. Kessels ◽  
Jiaxin Dong ◽  
Wibke Leibig ◽  
Peter Westermann ◽  
Britta Qualmann

1996 ◽  
Vol 314 (3) ◽  
pp. 723-726 ◽  
Author(s):  
Wai Lam W. LING ◽  
Dennis SHIELDS

The mechanism of secretory-vesicle formation from the trans-Golgi network (TGN) of endocrine cells is poorly understood. To identify cytosolic activities that facilitate the formation and fission of nascent secretory vesicles, we treated permeabilized pituitary GH3 cells with high salt to remove endogenous budding factors. Using this cell preparation, secretory-vesicle budding from the TGN required addition of exogenous cytosol and energy. Mammalian cytosols (GH3 cells and bovine brain) promoted post-TGN vesicle formation. Most significantly, a salt extract of membranes from the yeast Saccharomyces cerevisiae, a cell lacking a regulated secretory pathway, stimulated secretory vesicle budding in the absence of mammalian cytosolic factors. These results demonstrate that the factors which promote secretory-vesicle release from the TGN are conserved between yeast and mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document