cytosolic protein
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 55)

H-INDEX

46
(FIVE YEARS 8)

Author(s):  
Upendra Mahat ◽  
Bhavuk Garg ◽  
Chao-Yie Yang ◽  
Hrishikesh Mehta ◽  
Rabi Hanna ◽  
...  

Neutrophils migrate into inflamed tissue, engage in phagocytosis, and clear pathogens or apoptotic cells. These processes require well-coordinated events involving the actin cytoskeleton. We describe a child with severe neutropenia and episodes of soft tissue infections and pneumonia. Bone marrow examination showed granulocytic hypoplasia with dysplasia. Whole exome sequencing revealed a de novo heterozygous missense mutation in LCP1, which encodes the F-actin binding protein Lymphocyte Cytosolic Protein 1. To determine its pathophysiologic significance, we stably transduced cells with a doxycycline-inducible wild type LCP1 and LCP1 I232F lentiviral constructs. We observed dysplastic granulocytic 32D cells expressing LCP1 I232F cells. These cells showed decreased proliferation without a block in differentiation. Additionally, expression of LCP1 I232F resulted in a cell cycle arrest at G2/M phase, but it did not lead to increased levels of genes involved in apoptosis or the unfolded protein response. Both 32D and HeLa cells expressing mutant LCP1 showed impaired cell motility and invasiveness. Flow cytometry showed increased F-actin. However, mutant LCP1-expressing 32D cells demonstrated normal oxidative burst upon stimulation. Confocal imaging and subcellular fractionation revealed diffuse intracellular localization of LCP1, but only the mutant form was found in the nucleus. We conclude that LCP1 is a new gene involved in granulopoiesis, and the missense variant LCP1 I232F leads to neutropenia and granulocytic dysplasia with aberrant actin dynamics. Our work supports a model of neutropenia due to aberrant actin regulation.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010138
Author(s):  
Yolanda Rivera-Cuevas ◽  
Joshua Mayoral ◽  
Manlio Di Cristina ◽  
Anna-Lisa E. Lawrence ◽  
Einar B. Olafsson ◽  
...  

Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nikola Smatlik ◽  
Stefan Karl Drexler ◽  
Marc Burian ◽  
Martin Röcken ◽  
Amir Sadegh Yazdi

Chronic UV irradiation results in many changes in the skin, including hyperplasia, changes in dermal structures, and alteration of pigmentation. Exposure to UVB leads to cutaneous damage, which results in inflammation characterized by increased NF-κB activation and the induction of inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin- (IL-) 1, or IL-8. IL-1 secretion is the result of inflammasome activation which is besides apoptosis, a result of acute UVB treatment. Inflammasomes are cytosolic protein complexes whose formation results in the activation of proinflammatory caspase-1. Key substrates of caspase-1 are IL-1β and IL-18, and the cytosolic protein gasdermin D (GSDMD), which is involved in inflammatory cell death. Here, we demonstrate that UVB-induced inflammasome activation leads to the formation of ASC specks. Our findings show that UVB provokes ASC speck formation in human primary keratinocytes prior to cell death, and that specks are, opposed to the perinuclear cytosolic localization in myeloid cells, formed in the nucleus. Additionally, we showed by RNAi that NLRP1 and not NLRP3 is the major inflammasome responsible for UVB sensing in primary human keratinocytes. Formation of ASC specks indicates inflammasome assembly and activation as their formation in hPKs depends on the presence of NLRP1 and partially on NLRP3. Nuclear ASC specks are not specific for NLRP1/NLRP3 inflammasome activation, as the activation of the AIM2 inflammasome by cytosolic DNA results in ASC specks too. These nuclear ASC specks putatively link cell death to inflammasome activation, possibly by binding of IFI16 (gamma-interferon-inducible protein) to ASC. ASC can interact upon UVB sensing via IFI16 with p53, linking cell death to ASC speck formation.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110596
Author(s):  
Yishan Huo ◽  
Kainan Zhang ◽  
Songtao Han ◽  
Yangchun Feng ◽  
Yongxing Bao

Objective Lymphocyte cytosolic protein 2 (LCP2) is often ectopically expressed in various human tumors. However, the clinical significance and role of LCP2 in lung adenocarcinoma (LUAD) remain unclear. This study explored the prognostic significance of LCP2 in LUAD patients. Methods LCP2 expression in LUAD tissues was analyzed using data from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Western blotting was employed to detect LCP2 expression in LUAD. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore signaling pathways mediated by LCP2 co-regulatory genes. Immunohistochemistry was used to examine levels of LCP2 and programmed death ligand 1 (PD-L1) in 68 LUAD patients. Associations between LCP2 expression and clinicopathological features, prognoses, and PD-L1 levels among the LUAD in-patients were analyzed. Results Among the 68 LUAD in-patients, LCP2 expression was correlated with clinical stage and lymph node metastasis. LUAD patients with high LCP2 expression were associated with increased overall survival. LCP2 expression may be associated with an enrichment of several immune functions. Moreover, our immunohistochemistry results demonstrated that LCP2 expression was positively correlated with PD-L1 expression in LUAD tissues. Conclusions In the study, LCP2 was found to be a favorable prognostic biomarker in LUAD patients.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Roland Hager ◽  
Ulrike Müller ◽  
Nicole Ollinger ◽  
Julian Weghuber ◽  
Peter Lanzerstorfer

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2445
Author(s):  
Malcolm A. Leissring

More than seven decades have passed since the discovery of a proteolytic activity within crude tissue extracts that would become known as insulin-degrading enzyme (IDE). Certainly much has been learned about this atypical zinc-metallopeptidase; at the same time, however, many quite fundamental gaps in our understanding remain. Herein, I outline what I consider to be among the most critical unresolved questions within the field, many presenting as intriguing paradoxes. For instance, where does IDE, a predominantly cytosolic protein with no signal peptide or clearly identified secretion mechanism, interact with insulin and other extracellular substrates? Where precisely is IDE localized within the cell, and what are its functional roles in these compartments? How does IDE, a bowl-shaped protein that completely encapsulates its substrates, manage to avoid getting “clogged” and thus rendered inactive virtually immediately? Although these paradoxes are by definition unresolved, I offer herein my personal insights and informed speculations based on two decades working on the biology and pharmacology of IDE and suggest specific experimental strategies for addressing these conundrums. I also offer what I believe to be especially fruitful avenues for investigation made possible by the development of new technologies and IDE-specific reagents. It is my hope that these thoughts will contribute to continued progress elucidating the physiology and pathophysiology of this important peptidase.


Sign in / Sign up

Export Citation Format

Share Document