protein domains
Recently Published Documents


TOTAL DOCUMENTS

867
(FIVE YEARS 155)

H-INDEX

71
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Kenneth W Adolph

Multiple metaxin-like proteins are shown to exist in fungi, as also found for the metaxin proteins of vertebrates and invertebrates. In vertebrates, metaxins 1 and 2 are mitochondrial membrane proteins that function in the import of proteins into mitochondria. Fungal metaxin-like proteins were identified by criteria including their homology with human metaxins and the presence of characteristic GST_N_Metaxin, GST_C_Metaxin, and Tom37 protein domains. Fungi in different taxonomic divisions (phyla) were found to possess multiple metaxin-like proteins. These include the Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota, Neocallimastigomycota, and Zoopagomycota divisions. Most fungi with multiple metaxin-like proteins contain two proteins, designated MTXa and MTXb. Amino acid sequence alignments show a high degree of homology among MTXa proteins, with over 60% amino acid identities, and also among MTXb proteins of fungi in the same division. But very little homology is observed in aligning MTXa with MTXb proteins of the same or different fungi. Both the MTXa proteins and MTXb proteins have the protein domains that characterize the metaxins and metaxin-like proteins: GST_N_Metaxin, GST_C_Metaxin, and Tom37. The metaxins and metaxin-like proteins of vertebrates, invertebrates, plants, protists, and bacteria all possess these domains. The secondary structures of MTXa and MTXb proteins are both dominated by similar patterns of α-helical segments, but extensive β-strand segments are absent. Nine highly conserved α-helical segments are present, the same as other metaxins and metaxin-like proteins. Phylogenetic analysis reveals that MTXa and MTXb proteins of fungi form two separate and distinct groups. These groups are also separate from the groups of vertebrate metaxins, metaxin-related Sam37 proteins of yeasts, and metaxin-like FAXC proteins.


2022 ◽  
Author(s):  
Anna Grandchamp ◽  
Katrin Berk ◽  
Elias Dohmen ◽  
Erich Bornberg-Bauer

De novo genes are novel genes which emerge from non-coding DNA. Until now, little is known about de novo genes properties, correlated to their age and mechanisms of emergence. In this study, we investigate four properties: introns, upstream regulatory motifs, 5 prime UTRs and protein domains, in 23135 human proto-genes. We found that proto-genes contain introns, whose number and position correlates with the genomic position of proto-gene emergence. The origin of these introns is debated, as our result suggest that 41% proto-genes might have captured existing introns, as well as the fact that 13.7% of them do not splice the ORF. We show that proto-genes which emerged via overprinting tend to be more enriched in core promotor motifs, while intergenic and intronic ones are more enriched in enhancers, even if the motif TATA is most expressed upstream these genes. Intergenic and intronic 5 prime UTRs of proto-genes have a lower potential to stabilise mRNA structures than exonic proto-genes and established human genes. Finally, we confirm that proto-genes gain new putative domains with age. Overall, we find that regulatory motifs inducing transcription and translation of previously non-coding sequences may facilitate proto-gene emergence. Our paper demonstrates that introns, 5 prime UTRs, and domains have specific properties in proto-genes. We also show the importance of studying proto-genes in relation to their genomic position, as it strongly impacts these properties.


2021 ◽  
Vol 7 (12) ◽  
pp. 1069
Author(s):  
Giuseppe D. Tocchini-Valentini ◽  
Glauco P. Tocchini-Valentini

We have characterized a homodimeric tRNA endonuclease from the euryarchaeota Ferroplasma acidarmanus (FERAC), a facultative anaerobe which can grow at temperatures ranging from 35 to 42 °C. This enzyme, contrary to the eukaryal tRNA endonucleases and the homotetrameric Methanocaldococcus jannaschii (METJA) homologs, is able to cleave minimal BHB (bulge–helix–bulge) substrates at 30 °C. The expression of this enzyme in Schizosaccharomyces pombe (SCHPO) enables the use of its properties as effectors by inserting BHB motif introns into hairpin loops normally seen in mRNA transcripts. In addition, the FERAC endonuclease can create proteins with new functionalities through the recombination of protein domains.


2021 ◽  
Author(s):  
◽  
Yu Bai

<p>Multifunctional enzymes, bearing two or more catalytic activities, provide exceptional contributions to the efficient and coherent function of metabolic pathways. Two main benefits of multifunctional enzymes have been clearly described. Firstly, linked catalytic modules can enhance the overall catalytic rate for consecutive reactions of a metabolic pathway due to substrate channelling. Secondly, the fusion of two protein domains can impart allosteric control, such that the catalytic function of one of the protein domains is altered by a ligand binding to the second, covalently linked domain. This study examines a bifunctional enzyme comprising a 3-deoxy-D-arabino heptulosonate 7-phosphate synthase (DAH7PS) domain covalently fused to a C-terminal chorismate mutase (CM) domain from Prevotella nigrescens (PniDAH7PS). DAH7PS catalyses the first reaction of the shikimate pathway leading to the biosynthesis of aromatic amino acids, whereas CM functions at a pathway branch point, leading to the biosynthesis of tyrosine and phenylalanine. Through the investigation of PniDAH7PS, a special functional interdependence between the two non-consecutive catalytic functionalities and the derived allosteric regulation was unravelled.  Chapter 2 generally characterises the biochemical and structural features of PniDAH7PS. The two catalytic activities exhibit substantial hetero-interdependency and the separation of the two distinct catalytic domains results in a dramatic loss of both the DAH7PS and CM enzymatic activities. The structural investigation into this protein revealed a unique dimeric assembly and implicates a hetero-interaction between the DAH7PS and CM domains, providing a structural basis for the functional interdependence. Moreover, allosteric inhibition of DAH7PS by prephenate, the product of the CM-catalysed reaction, was observed. This allostery is accompanied by a striking conformational change, as observed by SAXS, implying that a manipulation of the hetero-domain interaction is the mechanism underpinning the allosteric inhibition.  Chapter 3 looks into the mechanism underpinning the DAH7PS and CM functional interdependence. Rearrangements of the conformation of PniDAH7PS following the addition of substrate combinations were observed. This indicates that a dynamic interaction between the DAH7PS and CM domains is important for catalysis. Furthermore, perturbation of these conformational variations by either a truncation mutation in the CM domain or the presence of a high concentration of NaCl interrupted the both the DAH7PS and CM catalytic activities, implying that a dynamic hetero-domain interaction is essential for the delivering the normal DAH7PS and CM functions. This work also reveals a dual role for the DAH7PS domain, exerting catalysis and allosteric activation on the CM activity simultaneously.  Chapter 4 investigates the mechanism of the allosteric inhibition of PniDAH7PS by prephenate. The structural effect of prephenate on PniDAH7PS, with the addition of substrate combinations, was inspected, and the results unravelled the same conformation of PniDAH7PS under different conditions, exhibiting high compactness and rigidity. This finding indicates that the probable inhibitory effect of prephenate on PniDAH7PS is realised by freezing the enzyme’s structure in order to deprive PniDAH7PS of the dynamic-dependent catalytic activity.  Chapter 5 describes the development of a method for producing segmentally isotopically labelled PniDAH7PS using Expressed Protein Ligation (EPL). This chapter also details attempts to couple this method with small angle neutron scattering (SANS) and nuclear magnetic resonance spectroscopy (NMR) to gain more structural information regarding the catalytic and allosteric properties of PniDAH7PS.</p>


2021 ◽  
Author(s):  
◽  
Yu Bai

<p>Multifunctional enzymes, bearing two or more catalytic activities, provide exceptional contributions to the efficient and coherent function of metabolic pathways. Two main benefits of multifunctional enzymes have been clearly described. Firstly, linked catalytic modules can enhance the overall catalytic rate for consecutive reactions of a metabolic pathway due to substrate channelling. Secondly, the fusion of two protein domains can impart allosteric control, such that the catalytic function of one of the protein domains is altered by a ligand binding to the second, covalently linked domain. This study examines a bifunctional enzyme comprising a 3-deoxy-D-arabino heptulosonate 7-phosphate synthase (DAH7PS) domain covalently fused to a C-terminal chorismate mutase (CM) domain from Prevotella nigrescens (PniDAH7PS). DAH7PS catalyses the first reaction of the shikimate pathway leading to the biosynthesis of aromatic amino acids, whereas CM functions at a pathway branch point, leading to the biosynthesis of tyrosine and phenylalanine. Through the investigation of PniDAH7PS, a special functional interdependence between the two non-consecutive catalytic functionalities and the derived allosteric regulation was unravelled.  Chapter 2 generally characterises the biochemical and structural features of PniDAH7PS. The two catalytic activities exhibit substantial hetero-interdependency and the separation of the two distinct catalytic domains results in a dramatic loss of both the DAH7PS and CM enzymatic activities. The structural investigation into this protein revealed a unique dimeric assembly and implicates a hetero-interaction between the DAH7PS and CM domains, providing a structural basis for the functional interdependence. Moreover, allosteric inhibition of DAH7PS by prephenate, the product of the CM-catalysed reaction, was observed. This allostery is accompanied by a striking conformational change, as observed by SAXS, implying that a manipulation of the hetero-domain interaction is the mechanism underpinning the allosteric inhibition.  Chapter 3 looks into the mechanism underpinning the DAH7PS and CM functional interdependence. Rearrangements of the conformation of PniDAH7PS following the addition of substrate combinations were observed. This indicates that a dynamic interaction between the DAH7PS and CM domains is important for catalysis. Furthermore, perturbation of these conformational variations by either a truncation mutation in the CM domain or the presence of a high concentration of NaCl interrupted the both the DAH7PS and CM catalytic activities, implying that a dynamic hetero-domain interaction is essential for the delivering the normal DAH7PS and CM functions. This work also reveals a dual role for the DAH7PS domain, exerting catalysis and allosteric activation on the CM activity simultaneously.  Chapter 4 investigates the mechanism of the allosteric inhibition of PniDAH7PS by prephenate. The structural effect of prephenate on PniDAH7PS, with the addition of substrate combinations, was inspected, and the results unravelled the same conformation of PniDAH7PS under different conditions, exhibiting high compactness and rigidity. This finding indicates that the probable inhibitory effect of prephenate on PniDAH7PS is realised by freezing the enzyme’s structure in order to deprive PniDAH7PS of the dynamic-dependent catalytic activity.  Chapter 5 describes the development of a method for producing segmentally isotopically labelled PniDAH7PS using Expressed Protein Ligation (EPL). This chapter also details attempts to couple this method with small angle neutron scattering (SANS) and nuclear magnetic resonance spectroscopy (NMR) to gain more structural information regarding the catalytic and allosteric properties of PniDAH7PS.</p>


Author(s):  
Florent Langenfeld ◽  
Tunde Aderinwale ◽  
Charles Christoffer ◽  
Woong-Hee Shin ◽  
Genki Terashi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chiara E. Cotroneo ◽  
Isobel Claire Gormley ◽  
Denis C. Shields ◽  
Michael Salter-Townshend

Abstract Background In bacteria, genes with related functions—such as those involved in the metabolism of the same compound or in infection processes—are often physically close on the genome and form groups called clusters. The enrichment of such clusters over various distantly related bacteria can be used to predict the roles of genes of unknown function that cluster with characterised genes. There is no obvious rule to define a cluster, given their variability in size and intergenic distances, and the definition of what comprises a “gene”, since genes can gain and lose domains over time. Protein domains can cluster within a gene, or in adjacent genes of related function, and in both cases these are chromosomally clustered. Here, we model the distances between pairs of protein domain coding regions across a wide range of bacteria and archaea via a probabilistic two component mixture model, without imposing arbitrary thresholds in terms of gene numbers or distances. Results We trained our model using matched gene ontology terms to label functionally related pairs and assess the stability of the parameters of the model across 14,178 archaeal and bacterial strains. We found that the parameters of our mixture model are remarkably stable across bacteria and archaea, except for endosymbionts and obligate intracellular pathogens. Obligate pathogens have smaller genomes, and although they vary, on average do not show noticeably different clustering distances; the main difference in the parameter estimates is that a far greater proportion of the genes sharing ontology terms are clustered. This may reflect that these genomes are enriched for complexes encoded by clustered core housekeeping genes, as a proportion of the total genes. Given the overall stability of the parameter estimates, we then used the mean parameter estimates across the entire dataset to investigate which gene ontology terms are most frequently associated with clustered genes. Conclusions Given the stability of the mixture model across species, it may be used to predict bacterial gene clusters that are shared across multiple species, in addition to giving insights into the evolutionary pressures on the chromosomal locations of genes in different species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Willow Coyote-Maestas ◽  
David Nedrud ◽  
Antonio Suma ◽  
Yungui He ◽  
Kenneth A. Matreyek ◽  
...  

AbstractProtein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1925
Author(s):  
Davin H. E. Setiamarga ◽  
Kazuki Hirota ◽  
Masa-aki Yoshida ◽  
Yusuke Takeda ◽  
Keiji Kito ◽  
...  

Despite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the basally diverging Nautilids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautilid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we performed a multiomics study on the shell of N. pompilius, by conducting transcriptomics of its mantle tissue and proteomics of its shell matrix. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet and the Euhadra snail) revealed that three proteins and six protein domains were conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six protein domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were probably present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Even though further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be carried out in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.


2021 ◽  
Vol 22 (19) ◽  
pp. 10677
Author(s):  
Huqiang Wang ◽  
Haolin Zhong ◽  
Chao Gao ◽  
Jiayin Zang ◽  
Dong Yang

The consecutive disordered regions (CDRs) are the basis for the formation of intrinsically disordered proteins, which contribute to various biological functions and increasing organism complexity. Previous studies have revealed that CDRs may be present inside or outside protein domains, but a comprehensive analysis of the property differences between these two types of CDRs and the proteins containing them is lacking. In this study, we investigated this issue from three viewpoints. Firstly, we found that in-domain CDRs are more hydrophilic and stable but have less stickiness and fewer post-translational modification sites compared with out-domain CDRs. Secondly, at the protein level, we found that proteins with only in-domain CDRs originated late, evolved rapidly, and had weak functional constraints, compared with the other two types of CDR-containing proteins. Proteins with only in-domain CDRs tend to be expressed spatiotemporal specifically, but they tend to have higher abundance and are more stable. Thirdly, we screened the CDR-containing protein domains that have a strong correlation with organism complexity. The CDR-containing domains tend to be evolutionarily young, or they changed from a domain without CDR to a CDR-containing domain during evolution. These results provide valuable new insights about the evolution and function of CDRs and protein domains.


Sign in / Sign up

Export Citation Format

Share Document