Integrating Knowledge Engineering with Knowledge Discovery in Database: TOM4D and TOM4L

Author(s):  
Laura Pomponio ◽  
Marc Le Goc
2013 ◽  
Vol 4 (1) ◽  
pp. 18-27
Author(s):  
Ira Melissa ◽  
Raymond S. Oetama

Data mining adalah analisis atau pengamatan terhadap kumpulan data yang besar dengan tujuan untuk menemukan hubungan tak terduga dan untuk meringkas data dengan cara yang lebih mudah dimengerti dan bermanfaat bagi pemilik data. Data mining merupakan proses inti dalam Knowledge Discovery in Database (KDD). Metode data mining digunakan untuk menganalisis data pembayaran kredit peminjam pembayaran kredit. Berdasarkan pola pembayaran kredit peminjam yang dihasilkan, dapat dilihat parameter-parameter kredit yang memiliki keterkaitan dan paling berpengaruh terhadap pembayaran angsuran kredit. Kata kunci—data mining, outlier, multikolonieritas, Anova


Author(s):  
Kai Hu ◽  
Yingxu Wang ◽  
Yousheng Tian

Autonomous on-line knowledge discovery and acquisition play an important role in cognitive informatics, cognitive computing, knowledge engineering, and computational intelligence. On the basis of the latest advances in cognitive informatics and denotational mathematics, this paper develops a web knowledge discovery engine for web document restructuring and comprehension, which decodes on-line knowledge represented in informal documents into cognitive knowledge represented by concept algebra and concept networks. A visualized concept network explorer and a semantic analyzer are implemented to capture and refine queries based on concept algebra. A graphical interface is built using concept and semantic models to refine users’ queries. To enable autonomous information restructuring by machines, a two-level knowledge base that mimics human lexical/syntactical and semantic cognition is introduced. The information restructuring model provides a foundation for automatic concept indexing and knowledge extraction from web documents. The web knowledge discovery engine extends machine learning capability from imperative and adaptive information processing to autonomous and cognitive knowledge processing with unstructured documents in natural languages.


Author(s):  
Elena Irina Neaga

This chapter deals with a roadmap on the bidirectional interaction and support between knowledge discovery (Kd) processes and ontology engineering (Onto) mainly directed to provide refined models using common methodologies. This approach provides a holistic literature review required for the further definition of a comprehensive framework and an associated meta-methodology (Kd4onto4dm) based on the existing theories, paradigms, and practices regarding knowledge discovery and ontology engineering as well as closely related areas such as knowledge engineering, machine/ontology learning, standardization issues and architectural models. The suggested framework may adhere to the Iso-reference model for open distributed processing and Omg-model-driven architecture, and associated dedicated software architectures should be defined.


Sign in / Sign up

Export Citation Format

Share Document