Large Scale Tomographic Particle Image Velocimetry of Turbulent Rayleigh-Bénard Convection

Author(s):  
Daniel Schiepel ◽  
Johannes Bosbach ◽  
Claus Wagner
2006 ◽  
Vol 13 (2) ◽  
pp. 205-222 ◽  
Author(s):  
G. V. Levina ◽  
I. A. Burylov

Abstract. A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.


2011 ◽  
Vol 688 ◽  
pp. 461-492 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on the influence of rotation about a vertical axis on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel with aspect ratio $\Gamma \equiv D/ L= 0. 50$ (where $D$ is the diameter and $L$ the height of the sample). The working fluid is water at an average temperature ${T}_{av} = 40{~}^{\ensuremath{\circ} } \mathrm{C} $ with a Prandtl number $\mathit{Pr}= 4. 38$. For rotation rates $\Omega \lesssim 1~\mathrm{rad} ~{\mathrm{s} }^{\ensuremath{-} 1} $, corresponding to inverse Rossby numbers $1/ \mathit{Ro}$ between 0 and 20, we investigated the temperature distribution at the sidewall and from it deduced properties of the LSC. The work covered the Rayleigh-number range $2. 3\ensuremath{\times} 1{0}^{9} \lesssim \mathit{Ra}\lesssim 7. 2\ensuremath{\times} 1{0}^{10} $. We measured the vertical sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions from single-roll states (SRSs) to double-roll states (DRSs). We found that modest rotation stabilizes the SRSs. For modest $1/ \mathit{Ro}\lesssim 1$ we found the unexpected result that the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample chamber), with the rotation at the horizontal midplane faster than near the top and bottom. This differential rotation led to disruptive events called half-turns, where the plane of the top or bottom section of the LSC underwent a rotation through an angle of $2\lrm{\pi} $ relative to the main portion of the LSC. The signature of the LSC persisted even for large $1/ \mathit{Ro}$ where Ekman vortices are expected. We consider the possibility that this signature actually is generated by a two-vortex state rather than by a LSC. Whenever possible, we compare our results with those for a $\Gamma = 1$ sample by Zhong & Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).


Sign in / Sign up

Export Citation Format

Share Document