scholarly journals Temporal dynamics of large-scale structures for turbulent Rayleigh–Bénard convection in a moderate aspect-ratio cylinder

2020 ◽  
Vol 901 ◽  
Author(s):  
P. J. Sakievich ◽  
Y. T. Peet ◽  
R. J. Adrian

Abstract

2017 ◽  
Vol 832 ◽  
pp. 721-744 ◽  
Author(s):  
Věra Musilová ◽  
Tomáš Králík ◽  
Marco La Mantia ◽  
Michal Macek ◽  
Pavel Urban ◽  
...  

We perform an experimental study of turbulent Rayleigh–Bénard convection up to very high Rayleigh number, $10^{8}<Ra<10^{14}$, in a cylindrical aspect ratio one cell, 30 cm in height, filled with cryogenic helium gas. We monitor temperature fluctuations in the convective flow with four small (0.2 mm) sensors positioned in pairs 1.5 cm from the sidewalls and 2.5 cm vertically apart and symmetrically around the mid-height of the cell. Based on one-point and two-point correlations of the temperature fluctuations, we determine different types of Reynolds numbers, $\mathit{Re}$, associated with the large-scale circulation (LSC). We observe a transition between two types of $\mathit{Re}(\mathit{Ra})$ scaling around $\mathit{Ra}=10^{10}{-}10^{11}$, which is accompanied by a scaling change of the skewness of the probability distribution functions (PDFs) of the temperature fluctuations. The $\mathit{Re}(\mathit{Ra})$ dependencies measured near the sidewall at Prandtl number $\mathit{Pr}\sim 1$ are consistent with the $\mathit{Ra}^{4/9}\mathit{Pr}^{-2/3}$ scaling above the transition, while for $\mathit{Ra}<10^{10}$, the $\mathit{Re}(\mathit{Ra})$ dependencies are steeper. It seems likely that this change in $\mathit{Re}(\mathit{Ra})$ scaling is linked to the previously reported change in the Nusselt number $\mathit{Nu}(\mathit{Ra})$ scaling. This behaviour is in agreement with independent cryogenic laboratory experiments with $\mathit{Pr}\sim 1$, but markedly different from the $\mathit{Re}$ scaling obtained in water experiments ($\mathit{Pr}\sim 3.3{-}5.6$). We discuss the results in comparison with different versions of the Grossmann–Lohse theory.


2008 ◽  
Vol 607 ◽  
pp. 119-139 ◽  
Author(s):  
DENIS FUNFSCHILLING ◽  
ERIC BROWN ◽  
GUENTER AHLERS

Measurements over the Rayleigh-number range 108 ≲ R ≲ 1011 and Prandtl-number range 4.4≲σ≲29 that determine the torsional nature and amplitude of the oscillatory mode of the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection are presented. For cylindrical samples of aspect ratio Γ=1 the mode consists of an azimuthal twist of the near-vertical LSC circulation plane, with the top and bottom halves of the plane oscillating out of phase by half a cycle. The data for Γ=1 and σ=4.4 showed that the oscillation amplitude varied irregularly in time, yielding a Gaussian probability distribution centred at zero for the displacement angle. This result can be described well by the equation of motion of a stochastically driven damped harmonic oscillator. It suggests that the existence of the oscillations is a consequence of the stochastic driving by the small-scale turbulent background fluctuations of the system, rather than a consequence of a Hopf bifurcation of the deterministic system. The power spectrum of the LSC orientation had a peak at finite frequency with a quality factor Q≃5, nearly independent of R. For samples with Γ≥2 we did not find this mode, but there remained a characteristic periodic signal that was detectable in the area density ρp of the plumes above the bottom-plate centre. Measurements of ρp revealed a strong dependence on the Rayleigh number R, and on the aspect ratio Γ that could be represented by ρp ~ Γ2.7±0.3. Movies are available with the online version of the paper.


2006 ◽  
Vol 13 (2) ◽  
pp. 205-222 ◽  
Author(s):  
G. V. Levina ◽  
I. A. Burylov

Abstract. A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.


2011 ◽  
Vol 688 ◽  
pp. 461-492 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on the influence of rotation about a vertical axis on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel with aspect ratio $\Gamma \equiv D/ L= 0. 50$ (where $D$ is the diameter and $L$ the height of the sample). The working fluid is water at an average temperature ${T}_{av} = 40{~}^{\ensuremath{\circ} } \mathrm{C} $ with a Prandtl number $\mathit{Pr}= 4. 38$. For rotation rates $\Omega \lesssim 1~\mathrm{rad} ~{\mathrm{s} }^{\ensuremath{-} 1} $, corresponding to inverse Rossby numbers $1/ \mathit{Ro}$ between 0 and 20, we investigated the temperature distribution at the sidewall and from it deduced properties of the LSC. The work covered the Rayleigh-number range $2. 3\ensuremath{\times} 1{0}^{9} \lesssim \mathit{Ra}\lesssim 7. 2\ensuremath{\times} 1{0}^{10} $. We measured the vertical sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions from single-roll states (SRSs) to double-roll states (DRSs). We found that modest rotation stabilizes the SRSs. For modest $1/ \mathit{Ro}\lesssim 1$ we found the unexpected result that the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample chamber), with the rotation at the horizontal midplane faster than near the top and bottom. This differential rotation led to disruptive events called half-turns, where the plane of the top or bottom section of the LSC underwent a rotation through an angle of $2\lrm{\pi} $ relative to the main portion of the LSC. The signature of the LSC persisted even for large $1/ \mathit{Ro}$ where Ekman vortices are expected. We consider the possibility that this signature actually is generated by a two-vortex state rather than by a LSC. Whenever possible, we compare our results with those for a $\Gamma = 1$ sample by Zhong & Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).


Sign in / Sign up

Export Citation Format

Share Document