An Approach for Using Mobile Devices in Industrial Safety-Critical Embedded Systems

Author(s):  
Ashraf Armoush ◽  
Dominik Franke ◽  
Igor Kalkov ◽  
Stefan Kowalewski
2021 ◽  
Vol 25 (1) ◽  
pp. 39-42
Author(s):  
Shuochao Yao ◽  
Jinyang Li ◽  
Dongxin Liu ◽  
Tianshi Wang ◽  
Shengzhong Liu ◽  
...  

Future mobile and embedded systems will be smarter and more user-friendly. They will perceive the physical environment, understand human context, and interact with end-users in a human-like fashion. Daily objects will be capable of leveraging sensor data to perform complex estimation and recognition tasks, such as recognizing visual inputs, understanding voice commands, tracking objects, and interpreting human actions. This raises important research questions on how to endow low-end embedded and mobile devices with the appearance of intelligence despite their resource limitations.


2009 ◽  
Vol 3 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Peter H. Feiler

2020 ◽  
Vol 10 (9) ◽  
pp. 3125
Author(s):  
Saad Mubeen ◽  
Elena Lisova ◽  
Aneta Vulgarakis Feljan

Cyber Physical Systems (CPSs) are systems that are developed by seamlessly integrating computational algorithms and physical components, and they are a result of the technological advancement in the embedded systems and distributed systems domains, as well as the availability of sophisticated networking technology. Many industrial CPSs are subject to timing predictability, security and functional safety requirements, due to which the developers of these systems are required to verify these requirements during the their development. This position paper starts by exploring the state of the art with respect to developing timing predictable and secure embedded systems. Thereafter, the paper extends the discussion to time-critical and secure CPSs and highlights the key issues that are faced when verifying the timing predictability requirements during the development of these systems. In this context, the paper takes the position to advocate paramount importance of security as a prerequisite for timing predictability, as well as both security and timing predictability as prerequisites for functional safety. Moreover, the paper identifies the gaps in the existing frameworks and techniques for the development of time- and safety-critical CPSs and describes our viewpoint on ensuring timing predictability and security in these systems. Finally, the paper emphasises the opportunities that artificial intelligence can provide in the development of these systems.


Sign in / Sign up

Export Citation Format

Share Document