A Comparison of Analytical Solutions of a High-Order RBC Scheme and Its Equivalent Differential Equation for a Steady Shock Problem

Author(s):  
Alain Lerat
1964 ◽  
Vol 4 (2) ◽  
pp. 179-194 ◽  
Author(s):  
J. C. Butcher

An (explicit) Runge-Kutta process is a means of numerically solving the differential equation , at the point x = x0+h, where y, f may be vectors.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Essam R. El-Zahar

A reliable algorithm is presented to develop piecewise approximate analytical solutions of third- and fourth-order convection diffusion singular perturbation problems with a discontinuous source term. The algorithm is based on an asymptotic expansion approximation and Differential Transform Method (DTM). First, the original problem is transformed into a weakly coupled system of ODEs and a zero-order asymptotic expansion of the solution is constructed. Then a piecewise smooth solution of the terminal value reduced system is obtained by using DTM and imposing the continuity and smoothness conditions. The error estimate of the method is presented. The results show that the method is a reliable and convenient asymptotic semianalytical numerical method for treating high-order singular perturbation problems with a discontinuous source term.


1994 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
T. Chanturia

Abstract It is shown that the differential equation u (n) = p(t)u, where n ≥ 2 and p : [a, b] → ℝ is a summable function, is not conjugate in the segment [a, b], if for some l ∈ {1, . . . , n – 1}, α ∈]a, b[ and β ∈]α, b[ the inequalities hold.


Sign in / Sign up

Export Citation Format

Share Document