Creating Free-Surface Flow Grids with Automatic Grid Refinement

Author(s):  
Jeroen Wackers ◽  
Ganbo Deng ◽  
Emmanuel Guilmineau ◽  
Alban Leroyer ◽  
Patrick Queutey ◽  
...  
2014 ◽  
Vol 92 ◽  
pp. 209-222 ◽  
Author(s):  
Jeroen Wackers ◽  
Ganbo Deng ◽  
Emmanuel Guilmineau ◽  
Alban Leroyer ◽  
Patrick Queutey ◽  
...  

Author(s):  
Peter van der Plas ◽  
Arthur E. P. Veldman ◽  
Henri J. L. van der Heiden ◽  
Roel Luppes

In many (wave) impact problems the area of interest does not change in time and is readily pointed out by hand, allowing for a one-time design of an efficient computational grid. However, for a large number of other applications, e.g. involving violent free-surface motion or moving objects, a reasonable efficiency gain can only be obtained by means of time-adaptive refinement of the grid. In previous studies a fixed, block-based Cartesian local grid refinement method was developed and implemented in the CFD simulation tool ComFLOW [1], a VOF-based Navier-Stokes solver on Cartesian grids with cut-cell discretization of the geometry. Special attention was paid to the interface discretization in cut-cells as well as the fluid displacement algorithm across refinement boundaries. The method was successfully applied to a range of offshore applications, including for example wave-impact on a semi-submersible (figure 1)and sloshing in a moonpool. In the present paper we present the first results of our attempts to extend the method to support adaptive refinement.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


2005 ◽  
Vol 63 (5-7) ◽  
pp. e1897-e1908 ◽  
Author(s):  
E. Miglio ◽  
S. Perotto ◽  
F. Saleri

Sign in / Sign up

Export Citation Format

Share Document