Volume 2: CFD and VIV
Latest Publications


TOTAL DOCUMENTS

66
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791856482

Author(s):  
Rodolfo T. Gonçalves ◽  
Dênnis M. Gambarine ◽  
Felipe P. Figueiredo ◽  
Fábio V. Amorim ◽  
André L. C. Fujarra

Experiments regarding flow-induced vibration on floating squared section cylinders with low aspect ratio were carried out in an ocean basin with rotating-arm apparatus. The floating squared section cylinders were elastically supported by a set of linear springs to provide low structural damping to the system. Three different aspect ratios were tested, namely L/D = 1.0, 2.0 and 3.0, and two different incidence angles, namely 0 and 45 degrees. The aims were to understanding the flow-induced vibration around single columns of multi-column platforms, such as semi-submersible and TLP. VIV on circular cylinders were also carried out to compare the results. The range of Reynolds number covered was 2,000 < Re < 27,000. The in-line and transverse amplitude results showed to be higher for 45-degree incidence compared with 0-degree, but the maximum amplitudes for squared section cylinders were lower compared with the circular ones. The double frequency in the in-line motion was not verified as in circular cylinders. The yaw amplitudes cannot be neglected for squared section cylinders, maximum yaw amplitudes around 10 degrees were observed for reduced velocities up to 15.


Author(s):  
Murilo M. Cicolin ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of amplitude of vibration and drag force are presented for models with low mass and damping which are free to respond in the cross-flow direction. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the peak response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. All the three meshes have increased drag when compared with that of the bare cylinder. Reynolds number ranged from 5,000 to 25,000 and reduced velocity was varied between 2 and 15.


2015 ◽  
Author(s):  
Yiannis Constantinides ◽  
Stergios Liapis ◽  
Don Spencer ◽  
Mohammed Islam ◽  
Kjetil Skaugset ◽  
...  

Production risers as well as drilling risers are often subjected to Vortex-induced vibrations (VIV) when exposed to ocean currents. VIV have been observed in the field and can cause fatigue failure and excessive drag on the riser. In order to suppress VIV and reduce drag, fairings are often used. This paper presents hydrodynamic qualification tests for two types of fairings: the short crab claw (SCC) and a tapered dual fin design. The short crab claw fairing design is a novel design that was developed by the Norwegian Deepwater Programme (NDP). As will be detailed in this paper, the SCC design offers very low drag, completely suppresses VIV and reduces riser interference. In 2012, a model test campaign was undertaken to understand and qualify the hydrodynamic performance of fairings at prototype conditions. The program consisted of testing the three fairing geometries and a strake to understand the stand-alone performance in VIV and the performance in interference. This was accomplished by utilizing a single pipe setup for the standalone test and a two-pipe setup for the interference tests. The paper reports the results of the program and draws conclusions on the hydrodynamic performance of the VIV suppression devices tested. Overall, all VIV suppression devices tested were able to suppress VIV with the SCC fairing being the most effective. In all cases tested, the downstream fairings / strakes were very effective in suppressing VIV in an interference scenario where a fairing was placed upstream. Contrary to the well-documented case of two strakes in tandem, in this case the upstream fairings did not reduce the effectiveness of the downstream fairings/strakes.


2015 ◽  
Author(s):  
Aldo Tralli ◽  
Arnout C. Bijlsma ◽  
Wilbert te Velde ◽  
Pieter de Haas

In order to estimate the impact on energy production and environment of tidal turbines placed in or near hydraulic structures like discharge sluices or storm surge barriers, a Computational Fluid Dynamics (CFD) study has been carried out on the relation between (head) loss induced by the turbines and their gross power production. CFD computations have been performed for Tocardo T2 turbines, using STAR-CCM+. Simulations of a single turbine in free flow conditions compare favorably with results of Blade Element Momentum (BEM) computations, in terms of torque and thrust. This BEM method model had been previously validated against both CFD data and field measurements. Then, a series of tests has been performed in a “virtual tow tank”, including the effect of the free surface and the blockage by side and bottom walls. These computations provide a base for a first estimate of the effect of turbines on the discharge capacity of a generic structure. This is considered to be the first step in a more general approach in which ultimately the effect of tidal turbines in the Eastern Scheldt Storm Surge Barrier will be assessed.


2015 ◽  
Author(s):  
Po-Wen Wang ◽  
Chi-Fang Lee ◽  
Yann Quéméner ◽  
Chien-Hua Huang

The objective of this study was to clarify the theoretical basis of sloshing loads and required plate thickness formulations in the harmonized common structural rules. This study used computational fluid dynamic (CFD) to calculate sloshing loads and used finite element analyses (FEA) to evaluate structural response. The sensitivity of the CFD predictions to the time step and grid size was also investigated. Cargo oil tanks were then selected in a handy size oil tanker and a very large crude carrier to evaluate the longitudinal and transverse sloshing loads on the tank boundaries. The results showed that the sloshing pressures computed at four filling levels were mostly consistent with CSR-H. Afterward, the sloshing pressure produced by CFD was applied to the finite element model by using a fluid-structure interaction technique to obtain the dynamic response of the structure. The dynamic responses were investigated to validate the quasistatic approach for sloshing assessment.


2015 ◽  
Author(s):  
Henri J. L. van der Heiden ◽  
Arthur E. P. Veldman ◽  
Roel Luppes ◽  
Peter van der Plas ◽  
Joop Helder ◽  
...  

To study extreme hydrodynamic wave impact in offshore and coastal engineering, the VOF-based CFD simulation tool ComFLOW is being developed. Recently, much attention has been paid to turbulence modeling, local grid refinement, wave propagation and absorbing boundary conditions. Here we will focus on the design of the turbulence model, which should be suitable for the coare grids as used in industrial applications. Thereto a blend of a QR-model and a regularization model has been designed, in combination with a dedicated wall model. The QR-model belongs to a class of modern eddy-viscosity models, where the amount of turbulent eddy viscosity is kept minimal. The performance of the model will be demonstrated with several applications relevant to the offshore industry. For validation, experiments have been carried out at MARIN.


2015 ◽  
Author(s):  
Don W. Allen ◽  
Li Lee ◽  
Dean Henning ◽  
Stergios Liapis

Most deepwater tubulars experiencing high currents frequently require vortex-induced vibration (VIV) suppression to maintain an acceptable fatigue life. Helical strakes and fairings are the most popular VIV suppression devices in use today. Marine growth can significantly affect the VIV of a bare riser, often within just a few weeks or months after riser installation. Marine growth can have a strong influence on the performance of helical strakes and fairings on deepwater tubulars. This influence affects both suppression effectiveness as well as the drag forces on the helical strakes and fairings. Unfortunately, many VIV analyses and suppression designs fail to account for the effects of marine growth at all, even on a bare riser. This paper utilizes results from both high and low Reynolds number VIV test programs to provide some design considerations for managing marine growth for VIV suppression devices.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


2015 ◽  
Author(s):  
David Jia ◽  
Madhusuden Agrawal ◽  
Chaojun Wang ◽  
Joanne Shen ◽  
Jim Malachowski

Liquid sloshing in Floating LNG tank could potentially cause strength issue, resonant vibration and fatigue damage of the tank structures. An FSI approach is used in this paper to provide solutions in both fluid domain and structural domain. The dynamic stresses from the solutions can be used to potentially address the three critical issues in floating LNG tank design. The first one is the strength of the tank structure under the peak impact loads. The second one is the resonant vibration when the excitation from the ship motion is near the natural frequencies of the LNG tank. The third one is the tank structure fatigue under dynamic loads that is caused by liquid sloshing due to ship motions even in the normal operation. In this paper, an FSI approach is used for modeling liquid sloshing induced by vessel motion in a FLNG tank. The scaling law [1] is used in the simulation to reduce the size of the model. Transient Computational Fluid Dynamics (CFD) is coupled with transient Computational Structural Dynamics (CSD). The gas and liquid inside tank are modelled with Volume of Fluid (VOF) theory. The FSI modeling can be potentially used to assess strength, vibration and fatigue in FLNG tanks due to liquid sloshing. The FSI results show vessel motions significantly affect impact pressure and dynamic stress on the tank. FSI can capture coupled physics of vessel motions, sloshing, impact pressure, and dynamic stress on the tank.


Author(s):  
Rolf Baarholm ◽  
Kjetil Skaugset ◽  
Halvor Lie ◽  
Henning Braaten

The VIV oscillations of marine risers are known to increase drag, and lead to structural fatigue. One proven method of suppressing this vibration is the use of fairings and strakes. These coverings essentially modify the flow along the cylinder, tripping the production of Karman vortices so that they act less coherently or far enough downstream so they interact less with the body. The Norwegian Deepwater Programme (NDP) has conducted a project with the objective to develop and qualify effective low drag fairing concepts with respect to VIV mitigation and galloping. Furthermore, emphasis is put on easy handling and installation. This paper describes the work and findings in an early phase of the development. This includes small scale model test campaigns. In addition to the bare riser for reference, the behaviour and performance of a total of 10 different fairing concepts are evaluated. Free oscillation tests are performed in a towing tank, where 2D fairings were tested in a pendulum set-up. The set-up enables free vibrations in up to 3 DOF (in-line and cross-flow vibrations and yaw). Fix tests with the purpose of establishing hydrodynamic coefficients for the various fairings have been performed in a large cavitation tunnel. Clear differences in performance have been noticed; particular for drag and galloping responses. Based on the results from the 2D tests, a screening of the fairing designs has been performed and the findings have set the course for further development of the most promising candidates for real life applications.


Sign in / Sign up

Export Citation Format

Share Document