Operation of a Microgrid System with Distributed Energy Resources and Storage

Author(s):  
Linfeng Zhang ◽  
Xingguo Xiong ◽  
Junling Hu
2021 ◽  
Author(s):  
Gregory Kaminski ◽  
Philip Odonkor

Abstract The decreasing cost of implementation and increasing regulatory incentive to lower energy use have led to an increased adoption of distributed energy resources in recent years. This increased adoption has been further fueled by a surge in energy consciousness and the expansion of energy-saving products and technologies. To lower reliance on the electrical grid and fully realize the benefits of distributed energy resources, many consumers have also elected to use battery systems to store generated energy. For owners of multiple buildings, or multiple owners willing to share the operational cost, building clusters may be formed to more effectively take advantage of these distributed resources and storage systems. The implementation of these systems in existing buildings introduces the question of what makes a “good” building cluster. Furthermore, the scalable nature of distributed energy sources and storage systems create countless possibilities for system configuration. Through comparison of unique two-building clusters from a stock of five buildings with a given distributed energy resource (in this case, a solar photovoltaic panel array) and energy storage system, we develop a fundamental understanding of the underlying factors that allow building clusters to be less reliant on the utility grid and make better use of energy generation and storage systems.


TecnoLógicas ◽  
2018 ◽  
Vol 21 (42) ◽  
pp. 13-30 ◽  
Author(s):  
Dahiana López-García ◽  
Adriana Arango-Manrique ◽  
Sandra X. Carvajal-Quintero

The electrification of rural or isolated areas coupled with increasing environmental concerns have promoted the emergence of Distributed Energy Resources (DER) and the operation by isolated microgrids. However, the integration of such resources involves technical issues related to the reliability and continuity of the electricity supply. Indeed, the uncertainty of renewable generation sources and the reduced inertia of isolated microgrids are challenges for the operation of these distribution systems. One way to address them is by providing ancillary services through all the resources involved in the system’s operation (generation assets, demand share, and storage systems). Accordingly, this paper first presents a literature review of the challenges and potential benefits of integrating DERs into the operation of a distribution system. It also includes some common strategies to mitigate the vulnerability of the introduction of these technologies in microgrids. Afterwards, the current state of each type of resource in Colombia is assessed. Finally, some basic strategies that enhance the benefits of DER integration are outlined along with the overcoming of challenges of microgrid operation in said country. To that end, we consider isolated Colombian regions to be natural laboratories where the effects of DER integration and the requirements for the operation by local production units can be analyzed.


Author(s):  
Giuseppe Marco Tina ◽  
Salvatore Cavalieri ◽  
Gian Giuseppe Soma ◽  
Gianni Viano ◽  
Sebastiano De Fiore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document