Reliability Analysis in Smart Grid Networks Considering Distributed Energy Resources and Storage Devices

Author(s):  
Asatilla Abdukhakimov ◽  
◽  
Sanjay Bhardwaj ◽  
Gaspard Gashema ◽  
Dong-Seong Kim
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3067
Author(s):  
Megan Culler ◽  
Hannah Burroughs

The share of renewable and distributed energy resources (DERs), like wind turbines, solar photovoltaics and grid-connected batteries, interconnected to the electric grid is rapidly increasing due to reduced costs, rising efficiency, and regulatory requirements aimed at incentivizing a lower-carbon electricity system. These distributed energy resources differ from traditional generation in many ways including the use of many smaller devices connected primarily (but not exclusively) to the distribution network, rather than few larger devices connected to the transmission network. DERs being installed today often include modern communication hardware like cellular modems and WiFi connectivity and, in addition, the inverters used to connect these resources to the grid are gaining increasingly complex capabilities, like providing voltage and frequency support or supporting microgrids. To perform these new functions safely, communications to the device and more complex controls are required. The distributed nature of DER devices combined with their network connectivity and complex controls interfaces present a larger potential attack surface for adversaries looking to create instability in power systems. To address this area of concern, the steps of a cyberattack on DERs have been studied, including the security of industrial protocols, the misuse of the DER interface, and the physical impacts. These different steps have not previously been tied together in practice and not specifically studied for grid-connected storage devices. In this work, we focus on grid-connected batteries. We explore the potential impacts of a cyberattack on a battery to power system stability, to the battery hardware, and on economics for various stakeholders. We then use real hardware to demonstrate end-to-end attack paths exist when security features are disabled or misconfigured. Our experimental focus is on control interface security and protocol security, with the initial assumption that an adversary has gained access to the network to which the device is connected. We provide real examples of the effectiveness of certain defenses. This work can be used to help utilities and other grid-connected battery owners and operators evaluate the severity of different threats and the effectiveness of defense strategies so they can effectively deploy and protect grid-connected storage devices.


2021 ◽  
Author(s):  
Gregory Kaminski ◽  
Philip Odonkor

Abstract The decreasing cost of implementation and increasing regulatory incentive to lower energy use have led to an increased adoption of distributed energy resources in recent years. This increased adoption has been further fueled by a surge in energy consciousness and the expansion of energy-saving products and technologies. To lower reliance on the electrical grid and fully realize the benefits of distributed energy resources, many consumers have also elected to use battery systems to store generated energy. For owners of multiple buildings, or multiple owners willing to share the operational cost, building clusters may be formed to more effectively take advantage of these distributed resources and storage systems. The implementation of these systems in existing buildings introduces the question of what makes a “good” building cluster. Furthermore, the scalable nature of distributed energy sources and storage systems create countless possibilities for system configuration. Through comparison of unique two-building clusters from a stock of five buildings with a given distributed energy resource (in this case, a solar photovoltaic panel array) and energy storage system, we develop a fundamental understanding of the underlying factors that allow building clusters to be less reliant on the utility grid and make better use of energy generation and storage systems.


2016 ◽  
Vol 12 (5) ◽  
pp. 1329421 ◽  
Author(s):  
Jose Ignacio Moreno ◽  
Manel Martínez-Ramón ◽  
Pedro S. Moura ◽  
Javier Matanza ◽  
Gregorio López

2022 ◽  
pp. 805-832
Author(s):  
Imed Saad Ben Dhaou ◽  
Aron Kondoro ◽  
Syed Rameez Ullah Kakakhel ◽  
Tomi Westerlund ◽  
Hannu Tenhunen

Smart grid is a new revolution in the energy sector in which the aging utility grid will be replaced with a grid that supports two-way communication between customers and the utility company. There are two popular smart-grid reference architectures. NIST (National Institute for Standards and Technology) has drafted a reference architecture in which seven domains and actors have been identified. The second reference architecture is elaborated by ETSI (European Telecommunications Standards Institute), which is an extension of the NIST model where a new domain named distributed energy resources has been added. This chapter aims at identifying the use of IoT and IoT-enabled technologies in the design of a secure smart grid using the ETSI reference model. Based on the discussion and analysis in the chapter, the authors offer two collaborative and development frameworks. One framework draws parallels' between IoT and smart grids and the second one between smart grids and edge computing. These frameworks can be used to broaden collaboration between the stakeholders and identify research gaps.


Author(s):  
Li Tao ◽  
Yan Gao ◽  
Lei Cao ◽  
Hongbo Zhu

Purpose The purpose of this paper is to seek an efficient method to tackle the energy provision problem for smart grid with sparse constraints and distributed energy and storage devices. Design/methodology/approach A complex smart grid is first studied, in which sparse constraints and the complex make-up of different energy consumption due to the integration of distributed energy and storage devices and the emergence of multisellers are discussed. Then, a real-time pricing scheme is formulated to tackle the demand response based on sparse bilevel programming. And then, a bilevel genetic algorithm (BGA) is further designed. Finally, simulations are conducted to evaluate the performance of the proposed approach. Findings The considered situation is widespread in practice, and meanwhile, the other cases including traditional model without the sparse constraints can be seen as its extensions. The BGA based on sparse bilevel programming has advantages of “no need of convexity of the model.” Moreover, it is feasible without the need to disclose the private information to others; therefore, privacies are protected and system scalability is kept. Simulation results validate the proposed approach has good performance in maximizing social welfare and balancing system energy distribution. Research limitations/implications In this paper, the authors consider the sparse constraints due to the fact that each user can only choose limited utility companies per time slot. In reality, there exist some other sparse cases, which deserve further study in the future. Originality/value To the best of the authors’ knowledge, this is one of the very first studies to address pricing problems for the smart grid with consideration of sparse constraints and integration of distributed energy and storage devices.


Sign in / Sign up

Export Citation Format

Share Document