International Journal of Electrical and Electronic Engineering & Telecommunications
Latest Publications


TOTAL DOCUMENTS

200
(FIVE YEARS 161)

H-INDEX

4
(FIVE YEARS 3)

Published By Ejournal Publishing

2319-2518

Author(s):  
Kanzumba Kusakana ◽  

Currently, there is few research works focusing on the optimal power dispatch of hybrid renewable energy systems operating in conjunction with hybrid energy storage systems, precisely the combination of pumped hydro storage and battery storage systems. Moreover, there is a lack of studies that focusing on analysing the potential energy cost reduction resulting from the economic power dispatch applied to hybrid energy systems combining grid-interactive renewable energy sources with hybrid energy storages under the peer to peer energy sharing scheme. Given the fact that each of these concepts has the potential benefit of reducing the operation energy cost; this study proposes an optimal energy management model of two grid-interactive prosumers operating in a peer to peer energy sharing mode to supply the loads both from the hybrid renewable sources and hybrid storage systems whilst minimizing the cost of energy purchased from the national grid. Simulation were conducted using different scenarios linked to the internal power sharing pricing structures. The results showed that the proposed arrangement has the potential to reduce substantial energy cost; decrease the reliance of the prosumer from the grid as well as reducing the need of having a larger storage.


Author(s):  
Sergei V. Podkovalnikov ◽  
◽  
Ivan L. Trofimov ◽  
Leonid N. Trofimov

The purpose of this paper is to present opportunities and technical features of the developed software for study of prospective Interstate Power Grid (ISPG) expansion in Northeast Asia. The mathematical model for optimization of power systems expansion and operating modes, which is the main part of the computing & geo-information system (CIS), is used. In this model, a linear optimization method is used to find optimal installed capacities by generation type mix; optimal electric ties transfer capabilities and operating modes for each electric power system in the ISPG. Annualized costs of the ISPG expansion as a whole are the value of the objective function. The obtained results of the model in tabular, graphic and cartographic forms are presented. Examples of the CIS usage for study of different scenarios of ISPG expansion in the Northeast Asia are shown.


Author(s):  
Moe Moe Oo ◽  
◽  
Myint Thuzar

This paper presents Unified Power Flow Controller (UPFC) with a new control strategy to improve the transmission capacity in power system network. With the growing demand of electricity, it is not possible to erect new lines to face the situation. Therefore UPFC is optimally utilizes to enhance the existing transmission network. A detail explanation of the controllers for both shunt and series converters of UPFC and DC link capacitor rating are presented in this study. To justify the performance of the UPFC model, 230kV transmission system in Upper Myanmar National Grid is considered as case study. The proposed control system performance is checked by applying different faults across a transmission line to which UPFC is connected. This is necessary because of the chance for occurance of fault is larger for this case study network. And, loading condition is changed to study the control system response. The simulation results show the effectiveness and suitable performance of the control strategy at improving transmission capacity. Transmission network model and all simulations have been done using MATLAB/Simulink software.


Author(s):  
Hamdi W. Rotib ◽  
◽  
Muhammad B. Nappu ◽  
Zulkifli Tahir ◽  
Ardiaty Arief ◽  
...  

Many types of research have been conducted for the development of Internet of Things (IoT) devices and energy consumption forecasting. In this research, the electric load forecasting is designed with the development of microcontrollers, sensors, and actuators, added with cameras, Liquid Crystal Display (LCD) touch screen, and minicomputers, to improve the IoT smart home system. Using the Python program, Principal Component Analysis (PCA) and Autoregressive Integrated Moving Average (ARIMA) algorithms are integrated into the website interface for electric load forecasting. As provisions for forecasting, a monthly dataset is needed which consists of electric current variables, number of individuals living in the house, room light intensity, weather conditions in terms of temperature, humidity, and wind speed. The main hardware parts are ESP32, ACS712, electromechanical relay, Raspberry Pi, RPi Camera, infrared Light Emitting Diode (LED), Light Dependent Resistor (LDR) sensor, and LCD touch screen. While the main software applications are Arduino Interactive Development Environment (IDE), Visual Studio Code, and Raspberry Pi OS, added with many libraries for Python 3 IDE. The experimental results provided the fact that PCA and ARIMA can predict short-term household electric load accurately. Furthermore, by using Amazon Web Services (AWS) cloud computing server, the IoT smart home system has excellent data package performances.


Author(s):  
Preeti Rani ◽  
◽  
Tejbir Singh ◽  
Meenu Kaushik ◽  
Vishant Gahlaut

The advancement of wireless communication is markedly accountable from the past two decades. A variety of designs and techniques have been established in the domain of reconfigurable multiband antennas for different wireless services. Now a days, a high quality of communication with reduced size is required for new generation wireless system. A multiband reconfigurable functionality offers a flexible and high-performance design by single antenna only. A brief review on multiband antenna with different reconfigurable techniques is presented in this paper. Moreover, the new possibilities for future wireless communication system have been demonstrated. A reconfigurable system along with minimal interference level over the fixed or non-reconfigurable transceivers has been discussed in detail.


Author(s):  
Amirah J. Mohammed ◽  
◽  
Raaed F. Hassan

The work presented in this paper aims to compare the effectiveness of different control strategies to improve the performance of the three-phase Induction Motor (IM). The Conventional Direct Torque Control (CDTC) was employed as the first strategy for driving the IM. This control strategy causes high ripples in the IM's torque and speed due to the hysteresis comparators and a variable switching frequency due to the look-up table. A modified DTC strategy based on Space Vector Modulation (DTC-SVM) was chosen as a second strategy to enhance the performance of the IM using the two-level inverter. This method, which leads to the reduction of the torque and speed ripples and achieves constant switching frequency. As the multi-level inverter becomes most popular than the two-level inverter, the third strategy is devoted to adopting the three-level flying capacitor inverter (TLFCMLI) -based DTC-SVM. The third strategy uses the method of mapping the multi-level space vector based on basic two-level SVM. Matlab/Simulink software package is utilized to implement the suggested controllers. Simulation results show that the DTC-SVM based on TLFCMLI significantly enhances the IM's performance compared with the other two strategies from the voltage and current profiles, torque, and speed points of view.


Author(s):  
Su Myat Noe Oo ◽  
◽  
Swe Swe Myint ◽  
Shouji Usuda

In the network contingencies, the branch overloading and voltage violation are the most serious conditions and may lead to security problems. The application of Thyristor Controlled Series Capacitor (TCSC) can provide the required apparent reactance smoothly and rapidly and can reduce network contingency problems. This paper focuses an application of Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to find out the optimal locations of TCSC devices under single contingency to reduce the voltage drops at system buses and line flow improvement on transmission lines. The suitability of the proposed technique is examined on Myanmar Electric Power System. The optimized location provided by each method is applied to single line contingency condition and the responses are observed. According to the simulation results, PSO method can provide the better the stability performance under single line contingency.


Author(s):  
Ayodeji A. Ajani ◽  
◽  
Vitalice K. Oduol ◽  
Zachaeus K. Adeyemo ◽  
Ebude C. Awasume

5G Ultra-Dense Networks (UDNs) will involve massive deployment of small cells which in turn form complex backhaul network. This backhaul network must be energy efficient for the 5G UDN network to be green. V-band and E-band mmWave technologies are among the wireless backhaul solutions tipped for 5G UDN. In this paper, we have compared the performance of the two backhaul solutions to determine which is more energy efficient for 5G UDN. We first formulated the problem to minimize power, then proposed an algorithm to solve the problem. This was then simulated using Network simulator 3.The first scenario made use of V-band mmWave while thesecond was E-band mmWave. The performance metricsused were power consumption and energy efficiency againstthe normalized hourly traffic profile. The performances ofthe two solutions were compared. The results revealed thatE-band mmWave outperformed V-band mmWave inbackhauling traffic in 5G UDN. It can be concluded that E-band green backhaul solution is recommended over V-bandmmWave for 5G UDN.


Author(s):  
Eman M. Abdelhady ◽  
◽  
Hala M. Abdelkader ◽  
Amr A. Al-Awamry

This paper presents a novel simple adaptive and efficient rectifier for Radio Frequency (RF) energy harvesting applications. Traditional rectifiers have maximum RF-DC Power Conversion Efficiency (PCE) over a narrow range of RF input power due to diode breakdown voltage restrictions. The proposed adaptive design helps to extend the PCE over a wider range of RF input power at 2.45GHz using a simple design. Two alternative paths arecontrolled depending on the RF input power level. Low input power levels activate the first path connected to a single rectifier; low power levels make the diode operate below its breakdown voltage and therefore avoiding PCE degradation. High input power levels activate the second path dividing it into three rectifiers. This keeps input power at each rectifier at a low power level to avoid exceeding the diode break down voltage. Simulated PCE of this work is kept above 50% over a range of 21.4 dBm input power from -0.8dBm to 20.6dBm.


Author(s):  
Sara Said ◽  
◽  
Abdenacer Es-salhi ◽  
Mohammed Elhitmy

In this paper, a new array antenna configuration based on Electromagnetic Band Gap (EBG) structures has been proposed for 3.5GHz wireless communication systems. The proposed slotted EBG structure, high impedance surface (SHI), consists of three squares and a square ring deposited on a substrate (Rogers RO4350) which has a relative permittivity of 10.2 and a thickness of 1.27mm. Initially a matrix of 3×7 unit cells of EBG structures is introduced between two patches of an array and then a matrix of 3×14 unit cell of EBG structures is integrated between eight patches, which resonate around 3.5GHz (Wi MAX). The insertion of these structures between the radiating elements of an array antenna reduces the mutual coupling and antenna dimensions by approximately (8dB, 11%) and (12 dB, 5%) respectively for two, eight elements array antenna. In addition, the directivity has been slightly improved in the presence of EBG structures, from 4.52dB to 6.09dB for a two-element array antenna, and from 8.18dB to 8.4dB for an eight-element antenna.


Sign in / Sign up

Export Citation Format

Share Document