Particle Swarm Optimization of Electricity Market Negotiating Players Portfolio

Author(s):  
Tiago Pinto ◽  
Zita Vale ◽  
Tiago M. Sousa ◽  
Tiago Sousa ◽  
Hugo Morais ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2873 ◽  
Author(s):  
Dinh Thanh Viet ◽  
Vo Van Phuong ◽  
Minh Quan Duong ◽  
Quoc Tuan Tran

As sources of conventional energy are alarmingly being depleted, leveraging renewable energy sources, especially wind power, has been increasingly important in the electricity market to meet growing global demands for energy. However, the uncertainty in weather factors can cause large errors in wind power forecasts, raising the cost of power reservation in the power system and significantly impacting ancillary services in the electricity market. In pursuance of a higher accuracy level in wind power forecasting, this paper proposes a double-optimization approach to developing a tool for forecasting wind power generation output in the short term, using two novel models that combine an artificial neural network with the particle swarm optimization algorithm and genetic algorithm. In these models, a first particle swarm optimization algorithm is used to adjust the neural network parameters to improve accuracy. Next, the genetic algorithm or another particle swarm optimization is applied to adjust the parameters of the first particle swarm optimization algorithm to enhance the accuracy of the forecasting results. The models were tested with actual data collected from the Tuy Phong wind power plant in Binh Thuan Province, Vietnam. The testing showed improved accuracy and that this model can be widely implemented at other wind farms.


2010 ◽  
Author(s):  
Panida Boonyaritdachochai ◽  
Chanwit Boonchuay ◽  
Weerakorn Ongsakul ◽  
Nader Barsoum ◽  
G. W. Weber ◽  
...  

2010 ◽  
Vol 1 (3) ◽  
pp. 51-66 ◽  
Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-31 ◽  
Author(s):  
Zhilong Wang ◽  
Feng Liu ◽  
Jie Wu ◽  
Jianzhou Wang

In the electricity market, the electricity price plays an inevitable role. Nevertheless, accurate price forecasting, a vital factor affecting both government regulatory agencies and public power companies, remains a huge challenge and a critical problem. Determining how to address the accurate forecasting problem becomes an even more significant task in an era in which electricity is increasingly important. Based on the chaos particle swarm optimization (CPSO), the backpropagation artificial neural network (BPANN), and the idea of bivariate division, this paper proposes a bivariate division BPANN (BD-BPANN) method and the CPSO-BD-BPANN method for forecasting electricity price. The former method creatively transforms the electricity demand and price to be a new variable, named DV, which is calculated using the division principle, to forecast the day-ahead electricity by multiplying the forecasted values of the DVs and forecasted values of the demand. Next, to improve the accuracy of BD-BPANN, chaos particle swarm optimization and BD-BPANN are synthesized to form a novel model, CPSO-BD-BPANN. In this study, CPSO is utilized to optimize the initial parameters of BD-BPANN to make its output more stable than the original model. Finally, two forecasting strategies are proposed regarding different situations.


2012 ◽  
pp. 710-725
Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.


Sign in / Sign up

Export Citation Format

Share Document