Thin Film Vis-Active Photocatalysts for Up-scaled Wastewater Treatment

Author(s):  
Anca Duta ◽  
Alexandru Enesca ◽  
Luminita Isac ◽  
Dana Perniu ◽  
Luminita Andronic ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Yu-Hsuan Chiao ◽  
Tanmoy Patra ◽  
Micah Belle Marie Yap Ang ◽  
Shu-Ting Chen ◽  
Jorge Almodovar ◽  
...  

Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.


2016 ◽  
Vol 4 (11) ◽  
pp. 4134-4144 ◽  
Author(s):  
G. S. Lai ◽  
W. J. Lau ◽  
S. R. Gray ◽  
T. Matsuura ◽  
R. Jamshidi Gohari ◽  
...  

TFN membranes containing 0.05 or 0.10 w/v% surface-functionalized TNTs in a PA selective layer were synthesized for better performances in water/wastewater treatment.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 237
Author(s):  
Nor Akalili Ahmad ◽  
Pei Sean Goh ◽  
Abdul Karim Zulhairun ◽  
Ahmad Fauzi Ismail

With the blooming of oil and gas industries, oily saline wastewater treatment becomes a viable option to resolve the oily water disposal issue and to provide a source of water for beneficial use. Reverse osmosis (RO) has been touted as a promising technology for oily saline wastewater treatment. However, one great challenge of RO membrane is fouling phenomena, which is caused by the presence of hydrocarbon contents in the oily saline wastewater. This study focuses on the fabrication of antifouling RO membrane for accomplishing simultaneous separation of salt and oil. Thin film nanocomposite (TFN) RO membrane was formed by the layer by layer (LbL) assembly of positively charged TNS (pTNS) and negatively charged TNS (nTNS) on the surface of thin film composite (TFC) membrane. The unique features, rendered by hydrophilic TNS bilayer assembled on TFC membrane in the formation of a hydration layer to enhance the fouling resistance by high concentration oily saline water while maintaining the salt rejection, were discussed in this study. The characterization findings revealed that the surface properties of membrane were improved in terms of surface hydrophilicity, surface roughness, and polyamide(PA) cross-linking. The TFC RO membrane coated with 2-bilayer of TNS achieved >99% and >98% for oil and salt rejection, respectively. During the long-term study, the 2TNS-PA TFN membrane outperformed the pristine TFC membrane by exhibiting high permeability and much lower fouling propensity for low to high concentration of oily saline water concentration (1000 ppm, 5000 ppm and 10,000 ppm) over a 960 min operation. Meanwhile, the average permeability of uncoated TFC membrane could only be recovered by 95.7%, 89.1% and 82.9% for 1000 ppm, 5000 ppm and 10,000 ppm of the oily saline feedwater, respectively. The 2TNS-PA TFN membrane achieved almost 100% flux recovery for three cycles by hydraulic washing.


Sign in / Sign up

Export Citation Format

Share Document