tfc membrane
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 39)

H-INDEX

14
(FIVE YEARS 5)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Tarek S. Jamil ◽  
Rabab A. Nasr ◽  
Hussien A. Abbas ◽  
Tamer I. M. Ragab ◽  
Sinethemba Xabela ◽  
...  

Novel low-cost cellulose triacetate-based membranes extracted from palm fronds have been fabricated through the phase–inversion procedure. The cellulose tri-acetate (CTA) membrane was modified by incorporation of graphene oxide (GO) prepared from palm fronds according to the modified Hummer method as well as the preparation of polyamide thin film composite CTA membranes to improve forward osmosis performance for seawater desalination. The surface characteristics and morphology of the prepared CTA, GO, and the fabricated membranes were investigated. The modified TFC prepared membrane had superior mechanical characteristics as well as permeation of water. The performance of the prepared membranes was tested using synthetic 2 M Sodium chloride (NaCl) feed solution. The water flux (Jw) of the thin-film composite (TFC) (CTA/0.3% GO) was 35 L/m2h, which is much higher than those of pure CTA and CTA/0.3% GO. Meanwhile, the salt reverse flux TFC (CTA/0.3% GO) was 1.1 g/m2h), which is much lower than those of pure CTA and CTA/0.3%. GO (Specific salt flux of TFC (CTA/0.3% GO) substrate membrane was 0.03 g/L indicating good water permeation and low reverse salt flux of the TFC membrane compared to CTA. A real saline water sample collected from Hurgada, Egypt, with totally dissolved solids of 42,643 mg/L with NaCl as the draw solution (DS) at 25 °C and flow rate 1.55 L/min, was used to demonstrate the high performance of the prepared TFC membrane. The chemical analysis of desalted permeated water sample revealed the high performance of the prepared TFC membrane. Consequently, the prepared low-cost forward osmosis (FO) thin-film composite CTA membranes can be introduced in the desalination industry to overcome the high cost of reverse osmosis membrane usage in water desalination.


2021 ◽  
pp. 119937
Author(s):  
Ping-Ping Li ◽  
Usman Shareef ◽  
Zhen-Liang Xu ◽  
Dovletjan Taymazov ◽  
Yu-Zhe Wu ◽  
...  
Keyword(s):  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 488
Author(s):  
Biqin Wu ◽  
Na Zhang ◽  
Mengling Zhang ◽  
Shuhao Wang ◽  
Xiaoxiao Song ◽  
...  

In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as a physical barrier to confine the amine diffusion and therefore limiting the IP reaction close to the interface. The morphology and crosslinking degree of the PA nanofilm could be controlled by doping different amounts of ODA@GO (therefore adjusting the diffusion resistance). At standard seawater desalination conditions (32,000 ppm NaCl, ~55 bar), the flux of the resultant thin film nanocomposite (TFN) membrane reached 59.6 L m−2 h−1, which was approximately 17% more than the virgin TFC membrane. Meanwhile, the optimal salt rejection at seawater conditions (i.e., 32,000 ppm NaCl) achieved 99.6%. Concurrently, the boron rejection rate was also elevated by 13.3% compared with the TFC membrane without confined growth.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1245
Author(s):  
Daoud Khanafer ◽  
Sudesh Yadav ◽  
Namuun Ganbat ◽  
Ali Altaee ◽  
John Zhou ◽  
...  

An osmotically driven membrane process was proposed for seawater pretreatment in a multi-stage flashing (MSF) thermal plant. Brine reject from the MSF plant was the draw solution (DS) in the forward osmosis (FO) process in order to reduce chemical use. The purpose of FO is the removal of divalent ions from seawater prior the thermal desalination. In this study, seawater at 80 g/L and 45 g/L concentrations were used as the brine reject and seawater, respectively. The temperature of the brine reject was 40 °C and of seawater was 25 °C. Commercial thin-film composite (TFC) and cellulose triacetate (CTA) membranes were evaluated for the pretreatment of seawater in the FO and the pressure-assisted FO (PAFO) processes. Experimental results showed 50% more permeation flux by increasing the feed pressure from 1 to 4 bar, and permeation flux reached 16.7 L/m2h in the PAFO process with a TFC membrane compared to 8.3 L/m2h in the PAFO process with CTA membrane. TFC membrane experienced up to 15% reduction in permeation flux after cleaning with DI water while permeation flux reduction in the CTA membrane was >6%. The maximum recovery rate was 11.5% and 8.8% in the PAFO process with TFC and CTA membrane, respectively. The maximum power consumption for the pretreatment of seawater was 0.06 kWh/m3 and 0.1 kWh/m3 for the PAFO process with a TFC and CTA membrane, respectively.


2021 ◽  
Vol 624 ◽  
pp. 119104
Author(s):  
Ping-Ping Li ◽  
Shuang-Mei Xue ◽  
Usman Shareef ◽  
Zhen-Liang Xu ◽  
Chen-Hao Ji
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document