scholarly journals Tensor Representations of Mackey Lie Algebras and Their Dense Subalgebras

Author(s):  
Ivan Penkov ◽  
Vera Serganova
2019 ◽  
Vol 19 (08) ◽  
pp. 2050149
Author(s):  
Shanshan Liu ◽  
Lina Song ◽  
Rong Tang

In this paper, first we study dual representations and tensor representations of Hom-pre-Lie algebras. Then we develop the cohomology theory of regular Hom-pre-Lie algebras in terms of the cohomology theory of regular Hom-Lie algebras. As applications, we study linear deformations of regular Hom-pre-Lie algebras, which are characterized by the second cohomology groups of regular Hom-pre-Lie algebras with the coefficients in the regular representations. The notion of a Nijenhuis operator on a regular Hom-pre-Lie algebra is introduced which can generate a trivial linear deformation of a regular Hom-pre-Lie algebra. Finally, we introduce the notion of a Hessian structure on a regular Hom-pre-Lie algebra, which is a symmetric nondegenerate 2-cocycle with the coefficient in the trivial representation. We also introduce the notion of an [Formula: see text]-operator on a regular Hom-pre-Lie algebra, by which we give an equivalent characterization of a Hessian structure.


Author(s):  
Josi A. de Azcárraga ◽  
Josi M. Izquierdo
Keyword(s):  

2018 ◽  
Vol 2018 (2) ◽  
pp. 43-49
Author(s):  
R.K. Gaybullaev ◽  
Kh.A. Khalkulova ◽  
J.Q. Adashev

2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


2020 ◽  
Vol 224 (3) ◽  
pp. 987-1008
Author(s):  
José Manuel Casas ◽  
Xabier García-Martínez

2016 ◽  
Vol 45 (1) ◽  
pp. 105-120 ◽  
Author(s):  
Qinxiu Sun ◽  
Hongliang Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document