Three-Dimensional Shakedown Solutions for Cross-Anisotropic Cohesive-Frictional Materials Under Moving Loads

Author(s):  
Hai-Sui Yu ◽  
Juan Wang ◽  
Shu Liu
2012 ◽  
Vol 518-523 ◽  
pp. 3874-3877
Author(s):  
Tao Qian ◽  
Xiao Ping Shui ◽  
Yong Fa Zhang ◽  
Yong Gang Guo ◽  
Meng Ma

A rule of response of an infinite viscous-elastic half-space stimulated by the moving loads of different speeds is outlined in this paper. In order to obtain a three-dimensional analytical solution of the Viscous-elastic half-space with the moving loads of different speeds, the Laplace transform and relative coordinate transformation in cylindrical coordinates are used. Then, the IFFT and relative coordinate transformation are used to solve two-dimensional infinite integration which can greatly improve the operational efficiency. The rules of responses of different velocities from the results by using the principle of dynamics and energy dissipation are also analyzed and induced in this paper, and obtain the incentives of displacement distortion by the super-Rayleigh wave velocity at surface. The results could be referred in improving the practical security in the project.


2003 ◽  
Vol 1823 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Tatsuo Nishizawa ◽  
Yoshiki Murata ◽  
Katsuro Kokubun

The structural design of ultrathin whitetopping (UTW) requires precise predictions of the loading stresses in the concrete slabs. A plate finite element model (FEM) is not used for structures with UTW because the model is not able to account for the asphalt subbase behaviors and the mechanical interaction between the concrete slab and asphalt subbase. A three-dimensional FEM (3DFEM) was used for the stress calculation of UTW. To take into account the mechanical interaction at the interface between the concrete slab and asphalt subbase as well as the load transfer across the joint, a general interface element was developed and incorporated into 3DFEM. Also, the viscosities of asphalt materials were considered by the viscoelastic formulation in the 3DFEM. A loading test was conducted on a test pavement. Stationary and moving loads were applied to the concrete slabs, and the strains in the slabs and the asphalt subbase were measured. By comparing the strains computed by 3DFEM with the measured strains, it was found that the viscosity of the asphalt subbase and the interface condition significantly affect the stresses in the concrete slab.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6595
Author(s):  
Jerzy Kisilowski ◽  
Rafał Kowalik

The paper will present a mathematical model for the guideway as a continuous system, followed by a moving force coming from the capsule and the capsule as a discrete system. The theoretical problem selected for analysis comes from a group of technical problems, which solve the dynamics of systems subjected to moving loads. Dynamic reactions in the system are described by a system of coupled partial and ordinary differential equations. Their solution was obtained using approximate numerical methods. The article concerns the analysis of Hyperloop vehicle guideway displacement in the occurrence of magnetic levitation phenomenon, which appears when starting, driving and braking the vehicle. The analysis was carried out using a numerical, three-dimensional model of the guideway. The results of the analysis are illustrated with calculation examples. The displacement of the guideway and magnet elements was determined by simulations. The simulations were conducted using MBS software. The presented results refer to the movements of the capsule of Hyperloop vehicles.


2017 ◽  
Vol 07 (01) ◽  
pp. 1-11 ◽  
Author(s):  
Bahram Navayi Neya ◽  
Mehdi Alijani Ardeshir ◽  
Ali Aghajani Delavar ◽  
Mohammad Zaman Roshan Bakhsh

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Qiang Fu ◽  
Changjie Zheng

A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.


Sign in / Sign up

Export Citation Format

Share Document