scholarly journals Computing Diffusion State Distance Using Green’s Function and Heat Kernel on Graphs

Author(s):  
Edward Boehnlein ◽  
Peter Chin ◽  
Amit Sinha ◽  
Linyuan Lu
2004 ◽  
Vol 56 (3) ◽  
pp. 590-611
Author(s):  
Yilong Ni

AbstractWe study the Riemannian Laplace-Beltrami operator L on a Riemannian manifold with Heisenberg group H1 as boundary. We calculate the heat kernel and Green's function for L, and give global and small time estimates of the heat kernel. A class of hypersurfaces in this manifold can be regarded as approximations of H1. We also restrict L to each hypersurface and calculate the corresponding heat kernel and Green's function. We will see that the heat kernel and Green's function converge to the heat kernel and Green's function on the boundary.


1998 ◽  
Vol 128 (5) ◽  
pp. 1033-1051
Author(s):  
Adrian T. Hill

Sharp upper and lower pointwise bounds are obtained for the Green's function of the equationfor λ> 0. Initially, in a Cartesian frame, it is assumed that . Pointwise estimates for the heat kernel of ut + Lu = 0, recently obtained under this assumption, are Laplace-transformed to yield corresponding elliptic results. In a second approach, the coordinate-free constraint is imposed. Within this class of operators, the equations defining the maximal and minimal Green's functions are found to be simple ODEs when written in polar coordinates, and these are soluble in terms of the singular Kummer confluent hypergeometric function. For both approaches, bounds on are derived as a consequence.


Author(s):  
Nahomi Kan ◽  
Masashi Kuniyasu ◽  
Kiyoshi Shiraishi ◽  
Zhenyuan Wu

1997 ◽  
Vol 4 (4) ◽  
pp. 589-602 ◽  
Author(s):  
Peter Li ◽  
Luen-fai Tam ◽  
Jiaping Wang

1985 ◽  
Vol 46 (C4) ◽  
pp. C4-321-C4-329 ◽  
Author(s):  
E. Molinari ◽  
G. B. Bachelet ◽  
M. Altarelli

2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document