Projected Climate Change Impact on Soil Erosion and Sediment Yield in the River Elbe Catchment

2015 ◽  
pp. 97-108
Author(s):  
Thorsten Pohlert
2016 ◽  
Vol 7 (5) ◽  
pp. 2373-2383 ◽  
Author(s):  
Deepak Khare ◽  
Arun Mondal ◽  
Sananda Kundu ◽  
Prabhash Kumar Mishra

2021 ◽  
Author(s):  
Joris Eekhout ◽  
Agustín Millares-Valenzuela ◽  
Alberto Martínez-Salvador ◽  
Rafael García-Lorenzo ◽  
Pedro Pérez-Cutillas ◽  
...  

<p>The impact of climate change on future soil loss is commonly assessed with soil erosion models, which are potentially an important source of uncertainty. Here we propose a soil erosion model ensemble, with the aim to reduce the model uncertainty in climate change impact assessments. The model ensemble consisted of five continuous process-based soil erosion models that run at a daily time step, i.e. DHSVM, HSPF, INCA, MMF and SHETRAN. All models simulate detachment by raindrop impact (interrill erosion), detachment by runoff (rill erosion) and immediate deposition of sediment within the cell of its origin. The models were implemented in the SPHY hydrological model. The soil erosion model ensemble was applied in a semi-arid catchment in the southeast of Spain. We applied three future climate scenarios based on global mean temperature rise (+1.5, +2 and +3 ºC). Data from two contrasting regional climate models were used to assess how an increase and a decrease in extreme precipitation affect model uncertainty. Soil loss is projected to increase and decrease under climate change, mostly reflecting the change in extreme precipitation. Model uncertainty is found to increase with increasing slope, extreme precipitation and runoff, which reveals some inherent differences in model assumptions among the five models. Moreover, the model uncertainty increases in all climate change scenarios, independent on the projected change in annual precipitation and extreme precipitation. This supports the importance to consider model uncertainty through model ensembles of climate, hydrology, and soil erosion in climate change impact assessments.</p><p>This research was funded by ERDF/Spanish Ministry of Science, Innovation and Universities - State Research Agency (AEI) /Project CGL2017-84625-C2-1-R; State Program for Research, Development and Innovation Focused on the Challenges of Society.</p>


Author(s):  
J.P.C. Eekhout ◽  
A. Millares‐Valenzuela ◽  
A. Martínez‐Salvador ◽  
R. García‐Lorenzo ◽  
P. Pérez‐Cutillas ◽  
...  

2021 ◽  
Vol 14 ◽  
pp. 117862212199584
Author(s):  
Gebrehana Girmay ◽  
Awdenegest Moges ◽  
Alemayehu Muluneh

Soil erosion is 1 of the most important environmental problems that pose serious challenges to food security and the future development prospects of Ethiopia. Climate change influences soil erosion and is critical for the planning and management of soil and water resources. This study aimed to assess the current and future climate change impact on soil loss rate for the near future (2011-2040), middle future (2041-2070), and far future (2071-2100) periods relative to the reference period (1989-2018) in the Agewmariam watershed, Northern Ethiopia. The 20 models of Coupled Model Intercomparison Project phase 5 global climate models (GCMs) under Representative Concentration Pathway (RCP) 4.5 (intermediate scenario) and 8.5 (high emissions scenario) scenarios were used for climate projection. The statistical bias correction method was used to downscale GCMs. Universal Soil Loss Equation integrated with geographic information system was used to estimate soil loss. The results showed that the current average annual soil loss rate and the annual total soil loss on the study area were found to be 25 t ha−1 year−1 and 51 403.13 tons, respectively. The soil loss has increased by 3.0%, 4.7%, and 5.2% under RCP 4.5 scenarios and 6.0%, 9.52%, and 14.32% under RCP 8.5 scenarios in the 2020s, 2050s, and 2080s, respectively, from the current soil loss rate. Thus, the soil loss rate is expected to increase on all future periods (the 2020s, 2050s, and 2080s) under both scenarios (RCP 4.5 and RCP 8.5) due to the higher erosive power of the future intense rainfall. Thus, climate change will exacerbate the existing soil erosion problem and would need for vigorous new conservation policies and investments to mitigate the negative impacts of climate change on soil loss.


Sign in / Sign up

Export Citation Format

Share Document