soil loss rate
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 25)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatek Belay ◽  
Daniel Ayalew Mengistu

Abstract Background Soil erosion is one of the major threats in the Ethiopian highlands. In this study, soil erosion in the Muga watershed of the Upper Blue Nile Basin (Abay) under historical and future climate and land use/land cover (LULC) change was assessed. Future LULC was predicted based on LULC map of 1985, 2002, and 2017. LULC maps of the historical periods were delineated from Landsat images, and future LULC was predicted using the CA–Markov chain model. Precipitation for the future period was projected from six regional circulation models. The RUSLE model was used to estimate the current and future soil erosion rate in Muga watershed. Results The average annual rate of soil erosion in the study area was increased from about 15 t ha−1 year−1 in 1985 to 19 t ha−1 year−1 in 2002, and 19.7 t ha−1 year−1 in 2017. Expansion of crop cultivation and loss of vegetation caused an increase in soil erosion. Unless proper measure is taken against the LULC changes, the rate of soil loss is expected to increase and reach about 20.7 t ha−1 year−1 in 2033. In the 2050s, soil loss is projected to increase by 9.6% and 11.3% under RCP4.5 and RCP8.5, respectively, compared with the baseline period. Thus, the soil loss rate is expected to increase under both scenarios due to the higher erosive power of the future intense rainfall. When both LULC and climate changes act together, the mean annual soil loss rate shows a rise of 13.2% and 15.7% in the future under RCP4.5 and RCP8.5, respectively, which is due to synergistic effects. Conclusions The results of this study can be useful for formulating proper land use planning and investments to mitigate the adverse effect of LULC on soil loss. Furthermore, climate change will exacerbate the existing soil erosion problem and would need for vigorous proper conservation policies and investments to mitigate the negative impacts of climate change on soil loss.


CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105503
Author(s):  
Ava Mombini ◽  
Nosratollah Amanian ◽  
Ali Talebi ◽  
Mahboobeh Kiani-Harchegani ◽  
Jesús Rodrigo-Comino

2021 ◽  
Vol 13 (19) ◽  
pp. 10614
Author(s):  
Hongli Li ◽  
Haiou Shen ◽  
Yu Wang ◽  
Yin Wang ◽  
Qiang Gao

Ridge tillage and straw returning are tillage practices widely used in the Chinese Mollisol region. However, the effects of ridge tillage combined with straw returning on runoff and soil loss control are still unclear. The objective of this study was to compare the effects of ridge tillage practices (contour ridge (CR)) and longitudinal ridge (LR), straw returning practices (straw on the furrow surface (SS)) and straw below the furrow (SB)), and their interactions on the runoff and soil loss by using simulated rainfall experiment. Two rainfall intensities (45 and 60 mm h−1) were applied to six combinations of ridge tillage and straw returning (contour ridge treatment, contour ridge with straw on the furrow surface treatment, contour ridge with straw below the furrow treatment, longitudinal ridge treatment, longitudinal ridge with straw on the furrow surface treatment, and longitudinal ridge with straw below the furrow treatment) on a 5° slope. The results showed that the phenomenon of ridge failure was common in the treatments with contour ridge. The average runoff rate and soil loss rate after ridge failure for treatments with contour ridge were separated 2.8 and 3.5 times greater than those of before failure at 60 mm h−1. However, the corresponding values were only 68.6% and 43.3% of the average value of longitudinal ridge treatment and longitudinal ridge with straw below the furrow treatment at 60 mm h−1. The water storage capacities of treatments with contour ridge remained constant when the rainfall intensity varied. The water storage capacities of contour ridge with straw on and below the furrow treatments were separate 3.0 and 1.0 mm less than that of contour ridge. However, longitudinal ridge with straw on the furrow surface treatment increased the runoff rate by 7.4% but reduced the soil loss rate by 72.6% when compared with longitudinal ridge treatment and longitudinal ridge with straw below the furrow treatment under the two rainfall intensities. Longitudinal with straw on the furrow surface treatment was more conducive to the stability of ridges, and there was no significant difference in total soil loss between longitudinal ridge with straw on the furrow surface treatment and treatments with contour ridge. This study was based on simulated rainfall conditions, and its adaptability under long-term positioning monitor in the field should be added in future.


2021 ◽  
Author(s):  
Zihao Cao ◽  
Qihua Ke ◽  
Keli Zhang ◽  
Zhuodong Zhang

<p>Rocky desertification is a serious environmental issue in karst regions that restricts food production and hinders local economic development. Generally, soil loss is known as a dominant factor driving rocky desertification. However, it is difficult to couple rocky desertification with the soil loss rate based on a database from short-term field plot observations. Hence, it is imperative to reconstruct the history of soil loss over long-term periods and to correlate the rocky desertification process with the soil loss rate. In karst regions, the most common geomorphic landforms are closed peak-cluster depressions. Researchers have shown that estimating soil loss from hillslopes based on a sediment deposition rate in a peak-cluster depression is possible. In this study, two typical peak-cluster depressions with different degrees of rocky desertification were selected, and sediment cores with lengths of 2 m were sampled from the depressions to determine pollen taxa, soil properties and sediments dating at different depths.The results showed that the burial ages of the sediments in the depressions were different in the time series. During the past millennium, soil loss in the LJWD watershed showed an overall decreasing and then increasing trend. While the change in soil erosion was more complex in the DJT watershed, high and low rates appeared alternately in the 748±100 – 2018 period. The alluvial pollen analysis demonstrated that the soil erosion changes in both watersheds were closely related to human farming activities and vegetation landscape changes. The soil loss history over the past 1000 years was insufficient to reveal the evolution of rocky deserts in karst areas, indicating that the formation of rocky deserts should have occurred over a longer historical period. Overall, the optically stimulated luminescence (OSL) dating and palynological techniques were reliable in the investigation of local erosional history in karst regions.</p>


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Lewoye Tsegaye ◽  
Rishikesh Bharti

AbstractSoil erosion is a serious and continuous environmental problem in Ethiopia. Lack of land use planning, environmental protection, over-cultivation, and overgrazing are prominent causes of erosion and sedimentation. This study is conducted in Anjeb watershed located in the Upper Blue Nile Basin, Ethiopia. In this study, the quantity and distribution of soil erosion, sediment delivery ratio (SDR), and sediment yield of the watershed were assessed by employing remote sensing, geographic information system (GIS), and revised universal soil loss equation analysis capabilities. Important data sets of topography, soil, conservations practices, cover management, and rainfall factors were processed and superimposed in GIS analysis, and soil loss rate, SDR, and sediment yield of the watershed were derived. Based on the result found, the watershed was categorized into six classes of erosion: slight (0–5), moderate (5–10), high (10–15), very high (15–30), severe (30–50), and very severe (> 50) t ha−1 yr−1. The estimated average annual soil loss was 17.3 t ha−1 yr−1. The soil loss rate is higher in the steeper and topographically dissected part of the watershed. The average sediment delivery capacity was about 0.122. The result showed that the average sediment yield in the watershed was grouped into classes of low (< 2.5), moderate (2.5–7.5), high (7.5–12.5), very high (12.5–22.5), severe (22.5–40), and very severe (> 40) t ha−1 yr−1. It is found that from a total of 20,125.5 t yr−1 eroded soil over the whole watershed 2254.5 t yr−1 of sediment has been brought and deposited to the channels. Sediment accumulation from the watershed threatens the storage capacity and life span of Anjeb reservoir which is the source of irrigation water downstream. The study provides an insight to planners and resource managers to design and implement practices of watershed management to reduce erosion and enhance land productivity and to minimize the reservoir sediment accumulation.


Author(s):  
Haiyan Fang

Cultivated land plays an important role in water and soil loss in earthy/rocky mountainous regions in northern China, however, its response to soil conservation measures and rainfall characteristics are still not fully understood. In the present study, 85 erosive rainfall events in 2011–2019 were grouped into three types, and the responses of runoff and soil loss to soil conservation measures and rainfall regimes on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir were evaluated. Results found that mean event runoff depths and soil loss rates on the five plots ranged from 0.03 mm to 7.05 mm and from 0.37 t km−2 to 300.51 t km−2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high frequency (i.e., 72.94%) rainfall regime A with a short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (Im) yielded a lower runoff depth and higher soil loss rate. Rainfall regime B with a longer RD, and a higher P and Im, however, produced higher a runoff depth and lower soil loss rate. Terraced plots had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plots on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and the construction of terraced plots should be given ample consideration as they could greatly reduce water quantity and cause water shortages in downstream catchments.


Sign in / Sign up

Export Citation Format

Share Document