A Parallel Multi-Start NSGA II Algorithm for Multiobjective Energy Reduction Vehicle Routing Problem

Author(s):  
Iraklis-Dimitrios Psychas ◽  
Magdalene Marinaki ◽  
Yannis Marinakis
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yong Wang ◽  
Xiuwen Wang ◽  
Xiangyang Guan ◽  
Jinjun Tang

This study aims to provide tactical and operational decisions in multidepot recycling logistics networks with consideration of resource sharing (RS) and time window assignment (TWA) strategies. The RS strategy contributes to efficient resource allocation and utilization among recycling centers (RCs). The TWA strategy involves assigning time windows to customers to enhance the operational efficiency of logistics networks. A biobjective mathematical model is established to minimize the total operating cost and number of vehicles for solving the multidepot recycling vehicle routing problem with RS and TWA (MRVRPRSTWA). A hybrid heuristic algorithm including 3D k-means clustering algorithm and nondominated sorting genetic algorithm- (NSGA-) II (NSGA-II) is designed. The 3D k-means clustering algorithm groups customers into clusters on the basis of their spatial and temporal distances to reduce the computational complexity in optimizing the multidepot logistics networks. In comparison with NSGA algorithm, the NSGA-II algorithm incorporates an elitist strategy, which can improve the computational speed and robustness. In this study, the performance of the NSGA-II algorithm is compared with the other two algorithms. Results show that the proposed algorithm is superior in solving MRVRPRSTWA. The proposed model and algorithm are applied to an empirical case study in Chongqing City, China, to test their applicability in real logistics operations. Four different scenarios regarding whether the RS and TWA strategies are included or not are developed to test the efficacy of the proposed methods. The results indicate that the RS and TWA strategies can optimize the recycling services and resource allocation and utilization and enhance the operational efficiency, thus promoting the sustainable development of the logistics industry.


Author(s):  
Ferreira J. ◽  
Steiner M.

Logistic distribution involves many costs for organizations. Therefore, opportunities for optimization in this respect are always welcome. The purpose of this work is to present a methodology to provide a solution to a complexity task of optimization in Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP). The methodology, illustrated using a case study (employee transport problem) and instances from the literature, was divided into three stages: Stage 1, “data treatment”, where the asymmetry of the routes to be formed and other particular features were addressed; Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II); and, finally, Stage 3, “analysis of the results”, with a comparison of the algorithms. Using the same parameters as the current solution, an optimization of 5.2% was achieved for Objective Function 1 (OF{\displaystyle _{1}}; minimization of CO{\displaystyle _{2}} emissions) and 11.4% with regard to Objective Function 2 (OF{\displaystyle _{2}}; minimization of the difference in demand), with the proposed CWNSGA-II algorithm showing superiority over the others for the approached problem. Furthermore, a complementary scenario was tested, meeting the constraints required by the company concerning time limitation. For the instances from the literature, the CWNSGA-II and CWTSNSGA-II algorithms achieved superior results.


Author(s):  
Emmanouela Rapanaki ◽  
Iraklis - Dimitrios Psychas ◽  
Magdalene Marinaki ◽  
Nikolaos Matsatsinis ◽  
Yannis Marinakis

Sign in / Sign up

Export Citation Format

Share Document