MobiScore: Towards Universal Credit Scoring from Mobile Phone Data

Author(s):  
Jose San Pedro ◽  
Davide Proserpio ◽  
Nuria Oliver
Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 575
Author(s):  
Naomi Simumba ◽  
Suguru Okami ◽  
Akira Kodaka ◽  
Naohiko Kohtake

Credit scoring of financially excluded persons is challenging for financial institutions because of a lack of financial data and long physical distances, which hamper data collection. The remote collection of alternative data has the potential to overcome these challenges, enabling credit access for such individuals. Whereas alternative data sources such as mobile phones have been investigated by previous researchers, this research proposes the integration of mobile-phone, satellite, and public geospatial data to improve credit evaluations where financial data are lacking. An approach to integrating these disparate data sources involving both spatial and temporal analysis methods such as spatial aggregation was employed, resulting in various data combinations. The resulting data sets were used to train classifiers of varying complexity, from logistic regression to ensemble learning. Comparisons were based on various performance metrics, including accuracy and the area under the receiver operating-characteristic curve. The combination of all three data sources performed significantly better than mobile-phone data, with the mean classifier accuracy and F1 score improving by 18% and 0.149, respectively. It is shown how these improvements can translate to cost savings for financial institutions through a reduction in misclassification errors. Alternative data combined in this manner could enhance credit provision to financially excluded persons while managing associated risks, leading to greater financial inclusion.


2019 ◽  
Vol 74 ◽  
pp. 26-39 ◽  
Author(s):  
María Óskarsdóttir ◽  
Cristián Bravo ◽  
Carlos Sarraute ◽  
Jan Vanthienen ◽  
Bart Baesens

2019 ◽  
Vol 7 (1) ◽  
pp. 77-84
Author(s):  
Jin Ki Eom ◽  
Kwang-Sub Lee ◽  
Ho-Chan Kwak ◽  
Ji Young Song ◽  
Myeong-Eon Seong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


2020 ◽  
Vol 7 (1) ◽  
pp. 29-48 ◽  
Author(s):  
Leonhard Menges

AbstractA standard account of privacy says that it is essentially a kind of control over personal information. Many privacy scholars have argued against this claim by relying on so-called threatened loss cases. In these cases, personal information about an agent is easily available to another person, but not accessed. Critics contend that control accounts have the implausible implication that the privacy of the relevant agent is diminished in threatened loss cases. Recently, threatened loss cases have become important because Edward Snowden’s revelation of how the NSA and GCHQ collected Internet and mobile phone data presents us with a gigantic, real-life threatened loss case. In this paper, I will defend the control account of privacy against the argument that is based on threatened loss cases. I will do so by developing a new version of the control account that implies that the agents’ privacy is not diminished in threatened loss cases.


Author(s):  
Yudong Guo ◽  
Fei Yang ◽  
Peter Jing Jin ◽  
Haode Liu ◽  
Sai Ma ◽  
...  

2021 ◽  
Author(s):  
Xintao Liu ◽  
Jianwei Huang ◽  
Jianhui Lai ◽  
Junwei Zhang ◽  
Ahmad M. Senousi ◽  
...  

Author(s):  
Zhenghong Peng ◽  
Guikai Bai ◽  
Hao Wu ◽  
Lingbo Liu ◽  
Yang Yu

Obtaining the time and space features of the travel of urban residents can facilitate urban traffic optimization and urban planning. As traditional methods often have limited sample coverage and lack timeliness, the application of big data such as mobile phone data in urban studies makes it possible to rapidly acquire the features of residents’ travel. However, few studies have attempted to use them to recognize the travel modes of residents. Based on mobile phone call detail records and the Web MapAPI, the present study proposes a method to recognize the travel mode of urban residents. The main processes include: (a) using DBSCAN clustering to analyze each user’s important location points and identify their main travel trajectories; (b) using an online map API to analyze user’s means of travel; (c) comparing the two to recognize the travel mode of residents. Applying this method in a GIS platform can further help obtain the traffic flow of various means, such as walking, driving, and public transit, on different roads during peak hours on weekdays. Results are cross-checked with other data sources and are proven effective. Besides recognizing travel modes of residents, the proposed method can also be applied for studies such as travel costs, housing–job balance, and road traffic pressure. The study acquires about 6 million residents’ travel modes, working place and residence information, and analyzes the means of travel and traffic flow in the commuting of 3 million residents using the proposed method. The findings not only provide new ideas for the collection and application of urban traffic information, but also provide data support for urban planning and traffic management.


Sign in / Sign up

Export Citation Format

Share Document