An Improved Artificial Bee Colony Algorithm Based on Particle Swarm Optimization and Differential Evolution

Author(s):  
Fengli Zhou ◽  
Yanxia Yang
2014 ◽  
Vol 556-562 ◽  
pp. 3562-3566 ◽  
Author(s):  
Shuo Jiang

In this paper, an improved artificial bee colony algorithm (IABC) for dynamic environment optimization has been proposed. As we compared the IABC with greedy algorithm (GA), Particle swarm optimization (PSO) and original artificial bee colony algorithm (ABC), the result of dynamic function optimization shows that the IABC can obtain satisfactory solutions and good tracing performance for dynamic function in time.


2018 ◽  
Vol 19 (2) ◽  
pp. 103 ◽  
Author(s):  
Doddy Prayogo ◽  
Richard Antoni Gosno ◽  
Richard Evander ◽  
Sentosa Limanto

Penelitian ini menyelidiki performa dari metode metaheuristik baru bernama symbiotic organisms search (SOS) dalam menentukan tata letak fasilitas proyek konstruksi yang optimal berdasarkan jarak tempuh pekerja. Dua buah studi kasus tata letak fasilitas digunakan untuk menguji akurasi dan konsistensi dari SOS. Sebagai tambahan, tiga metode metaheuristik lainnya, yaitu particle swarm optimization, artificial bee colony, dan teaching–learning-based optimization, digunakan sebagai pembanding terhadap algoritma SOS. Hasil simulasi mengindikasikan bahwa algoritma SOS lebih unggul serta memiliki karakteristik untuk menghasilkan titik konvergen lebih cepat jika dibandingkan dengan metode metaheuristik lainnya dalam proses optimasi tata letak fasilitas proyek konstruksi.


Sign in / Sign up

Export Citation Format

Share Document