Sensor Fusion Enhancement for Mobile Positioning Systems

Author(s):  
Karol Ciążyński ◽  
Artur Sierszeń
Author(s):  
Giseo Park ◽  
Yoonjin Hwang ◽  
Seibum B. Choi

The vehicle positioning system can be utilized for various automotive applications. Primarily focusing on practicality, this paper presents a new method for vehicle positioning systems using low-cost sensor fusion, which combines global positioning system (GPS) data and data from easily available in-vehicle sensors. As part of the vehicle positioning, a novel nonlinear observer for vehicle velocity and heading angle estimation is designed, and the convergence of estimation error is also investigated using Lyapunov stability analysis. Based on this estimation information, a new adaptive Kalman filter with rule-based logic provides robust and highly accurate estimations of the vehicle position. It adjusts the noise covariance matrices Q and R in order to adapt to various environments, such as different driving maneuvers and ever-changing GPS conditions. The performance of the entire system is verified through experimental results using a commercial vehicle. Finally, through a comparative study, the effectiveness of the proposed algorithm is confirmed.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Arvind Ramtohul ◽  
Kavi Kumar Khedo

The recent developments in mobile positioning technologies and the increasing demands of ubiquitous computing have significantly contributed to sophisticated positioning applications and services. Position information represents a core element in the human-centred activities, assisting in visualising complex environments effectively and providing a representational coordinate for localisation, tracking, and navigation purposes. The emergence of smartphones has accelerated the development of cutting-edge positioning-based systems since they are contained to have more processing, memory, and battery power. Similarly, mobile devices are now equipped with new sensory capabilities, wireless communications, and localisation technologies. This has quadrupled towards new advances on positioning techniques, enhancing the existing ones and brought more value to positioning-based systems. Research studies in positioning techniques have progressed in different directions, and no work has categorised and assessed the various advancements in this area. Accuracy and precision are the two challenging aspects that are crucial to the proper functioning of a positioning system. In practice, there is not a single positioning technique that could be appropriate for different situations. Most of the survey papers have focussed on carrying out their review on conventional positioning techniques. The common positioning technique uses simple technologies and is applied to a single type of environment. Hybrid techniques are the next generation of positioning technique that is supporting the real and com plex environment. This paper presents a comprehensive review on the mobile positioning techniques and systems. A total of 21 positioning systems published between the years 2012 and 2018 in the top 5 most popular indexed databases are reviewed. The positioning techniques are identified and streamlined through a methodical process, and the selected ones are reviewed using derived parameters. This paper provides a significant review of the current state of the mobile positioning techniques and outlines the research issues that require more investigation.


Author(s):  
Torleiv H. Bryne ◽  
Robert H. Rogne ◽  
Thor I. Fossen ◽  
Tor A. Johansen

In this paper we present an alternative configuration of sensors, position and heading reference systems for dynamically positioned (DP) vessels. The approach uses a sensor structure based on low-cost inertial measurements units (IMUs), satisfying fault tolerance against single-point failures that is at the essence of the IMO guidelines for both DP class 2 and 3 vessels. Recent results have shown that dual-redundant position and heading reference systems are sufficient to prevent loss of position within some well-defined time horizons by exploiting sensor fusion of the reference systems and triple-redundant MEMS-based IMUs. These IMUs also function as Vertical Reference Units (VRUs), since vessel motions is obtained using the same IMU configuration and sensor fusion framework. In this proposition, the acceleration measurements provided by the IMUs make wind and other force sensors unnecessary, except possibly for an advisory role. The proposed framework has the potential to significantly reduce the cost of dynamic positioning systems without compromising safety.


Sign in / Sign up

Export Citation Format

Share Document