Linear Feature Sensibility for Output Partitioning in Ordered Neural Incremental Attribute Learning

Author(s):  
Ting Wang ◽  
Sheng-Uei Guan ◽  
Jieming Ma ◽  
Fangzhou Liu
2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2748
Author(s):  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Núria Parés ◽  
Diego A. Tibaduiza ◽  
Francesc Pozo

Damage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition methodology for structural damage classification was developed in this study. The proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction, (5) classification using the extreme gradient boosting machine learning classifier, and (6) validation applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal component analysis are employed; the original data of 58,008 features is reduced to only 21 features. The methodology is validated with an experimental test performed in a small-scale wind-turbine foundation structure that simulates the perturbation effects caused by wind and marine waves by applying an unknown white noise signal excitation to the structure. A vibration-response methodology is selected for collecting accelerometer data from both the healthy structure and the structure subjected to four different damage scenarios. The datasets are satisfactorily classified, with performance measures over 99.9% after using the proposed damage classification methodology.


Ecosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Matthias C. Spangenberg ◽  
Robert Serrouya ◽  
Melanie Dickie ◽  
Craig A. DeMars ◽  
Théo Michelot ◽  
...  

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 270-279
Author(s):  
Quanbao Li ◽  
Fajie Wei ◽  
Shenghan Zhou

AbstractThe linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.


2017 ◽  
Vol E100.D (9) ◽  
pp. 2249-2252 ◽  
Author(s):  
Seongkyu MUN ◽  
Minkyu SHIN ◽  
Suwon SHON ◽  
Wooil KIM ◽  
David K. HAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document