Protein l-Arginine Methylation of RNA-Binding Proteins and Their Impact on Human Diseases

2016 ◽  
pp. 189-199
Author(s):  
Michael C. Yu ◽  
Christopher A. Jackson
1995 ◽  
Vol 15 (5) ◽  
pp. 2800-2808 ◽  
Author(s):  
Q Liu ◽  
G Dreyfuss

Heterogenous nuclear ribonucleoproteins (hnRNPs) bind pre-mRNAs and facilitate their processing into mRNAs. Many of the hnRNPs undergo extensive posttranslational modifications including methylation on arginine residues. hnRNPs contain about 65% of the total NG,NG-dimethylarginine found in the cell nucleus. The role of this modification is not known. Here we identify the hnRNPs that are methylated in HeLa cells and demonstrate that most of the pre-mRNA-binding proteins receive this modification. Using recombinant human hnRNP A1 as a substrate, we have partially purified and characterized a protein-arginine N-methyltransferase specific for hnRNPs from HeLa cells. This methyltransferase can methylate the same subset of hnRNPs in vitro as are methylated in vivo. Furthermore, it can also methylate other RNA-binding proteins that contain the RGG motif RNA-binding domain. This activity is evolutionarily conserved from lower eukaryotes to mammals, suggesting that methylation has a significant role in the function of RNA-binding proteins.


2022 ◽  
Author(s):  
Murat C Kalem ◽  
Harini Subbiah ◽  
Shichen Shen ◽  
Runpu Chen ◽  
Luke Terry ◽  
...  

Protein arginine methylation is a key post-translational modification in eukaryotes that modulates core cellular processes, including translation, morphology, transcription, and RNA fate. However, this has not been explored in Cryptococcus neoformans, a human-pathogenic basidiomycetous encapsulated fungus. We characterized the five protein arginine methyltransferases in C. neoformans and highlight Rmt5 as critical regulator of cryptococcal morphology and virulence. An rmt5∆ mutant was defective in thermotolerance, had a remodeled cell wall, and exhibited enhanced growth in an elevated carbon dioxide atmosphere and in chemically induced hypoxia. We revealed that Rmt5 interacts with post-transcriptional gene regulators, such as RNA-binding proteins and translation factors. Further investigation of the rmt5∆ mutant showed that Rmt5 is critical for the homeostasis of eIF2α and its phosphorylation state following 3-amino-1,2,4-triazole-induced ribosome stalling. RNA sequencing of one rmt5∆ clone revealed stable chromosome 9 aneuploidy that was ameliorated by complementation but did not impact the rmt5∆ phenotype. As a result of these diverse interactions and functions, loss of RMT5 enhanced phagocytosis by murine macrophages and attenuated disease progression in mice. Taken together, our findings link arginine methylation to critical cryptococcal cellular processes that impact pathogenesis, including post-transcriptional gene regulation by RNA- binding proteins.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Michael C. Yu

In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.


Sign in / Sign up

Export Citation Format

Share Document