mrna localization
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 95)

H-INDEX

68
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ankita Arora ◽  
Raeann Goering ◽  
Hei Yong G. Lo ◽  
Joelle Lo ◽  
Charlie Moffatt ◽  
...  

Alternative polyadenylation (APA) is a widespread and conserved regulatory mechanism that generates diverse 3′ ends on mRNA. APA patterns are often tissue specific and play an important role in cellular processes such as cell proliferation, differentiation, and response to stress. Many APA sites are found in 3′ UTRs, generating mRNA isoforms with different 3′ UTR contents. These alternate 3′ UTR isoforms can change how the transcript is regulated, affecting its stability and translation. Since the subcellular localization of a transcript is often regulated by 3′ UTR sequences, this implies that APA can also change transcript location. However, this connection between APA and RNA localization has only recently been explored. In this review, we discuss the role of APA in mRNA localization across distinct subcellular compartments. We also discuss current challenges and future advancements that will aid our understanding of how APA affects RNA localization and molecular mechanisms that drive these processes.


2022 ◽  
Author(s):  
MaKenzie R. Scarpitti ◽  
Julia E. Warrick ◽  
Michael G. Kearse

Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome, the leading form of inherited intellectual disability and the most common monogenic cause of autism spectrum disorders. FMRP is an RNA-binding protein that controls neuronal mRNA localization and translation. Notably, FMRP is thought to inhibit translation elongation after being recruited to target transcripts via binding RNA G-quadruplexes (G4s) within the coding sequence. Here we directly tested this model and report that FMRP inhibits translation elongation independent of mRNA G4s. Furthermore, we found that the RGG box motif together with its natural C-terminal domain forms a non-canonical RNA-binding domain (ncRBD) that binds reporter mRNA and all four polymeric RNA sequences. The ncRBD is essential for FMRP to inhibit translation. Transcripts that are bound by FMRP through the ncRBD co-sediment with heavy polysomes, which is consistent with stalling elongating ribosomes and a subsequent accumulation of slowed polysomes. Together, this work shifts our understanding of how FMRP inhibits translation elongation and supports a model where repression is driven by local FMRP and mRNA concentrations rather than target mRNA sequence.


Development ◽  
2021 ◽  
Author(s):  
Cristina Tocchini ◽  
Michèle Rohner ◽  
Laurent Guerard ◽  
Poulomi Ray ◽  
Stephen E. Von Stetina ◽  
...  

mRNA localization is an evolutionarily widespread phenomenon that can facilitate subcellular protein targeting. Extensive work has focused on mRNA targeting through “zip-codes” within untranslated regions (UTRs), while much less is known about translation-dependent cues. Here, we examine mRNA localization in Caenorhabditis elegans embryonic epithelia. From an smFISH-based survey, we identified mRNAs associated with the cell membrane or cortex, and with apical junctions in a stage- and cell type-specific manner. Mutational analyses for one of these transcripts, dlg-1/discs large, revealed that it relied on a translation-dependent process and did not require its 5’ or 3'UTRs. We suggest a model in which dlg-1 transcripts are co-translationally localized with the nascent protein: first the translating complex goes to the cell membrane using sequences located at the carboxy-terminus/3’ end, and then apically using amino-terminal/5’ sequences. These studies identify a translation-based process for mRNA localization within developing epithelia and determine the necessary cis-acting sequences for dlg-1 mRNA targeting.


2021 ◽  
Author(s):  
Vytaute Boreikaite ◽  
Thomas Elliot ◽  
Jason Chin ◽  
Lori A Passmore

3′-end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3′-end of the mature transcript, which is important for mRNA localization, translation and stability. Cleavage must therefore be tightly regulated. Here, we reconstitute specific and efficient 3′-endonuclease activity of human CPSF with purified proteins. This requires the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm) and, importantly, the multi-domain protein RBBP6. Unlike its yeast homologue Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to human. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in RNA processing.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sarah L. Gillen ◽  
Chiara Giacomelli ◽  
Kelly Hodge ◽  
Sara Zanivan ◽  
Martin Bushell ◽  
...  

Abstract Background Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell’s requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. Results This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. Conclusions We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Junnan Fang

Centrosomes, functioning as microtubule organizing centers, are composed of a proteinaceous matrix of pericentriolar material (PCM) that surrounds a pair of centrioles. Drosophila Pericentrin (Pcnt)-like protein (PLP) is a key component of the centrosome that serves as a scaffold for PCM assembly. The disruption of plp in Drosophila results in embryonic lethality, while the deregulation of Pcnt in humans is associated with MOPD II and Trisomy 21.We recently found plp mRNA localizes to Drosophila embryonic centrosomes. While RNA is known to associate with centrosomes in diverse cell types, the elements required for plp mRNA localization to centrosomes remains completely unknown. Additionally, how plp translation is regulated to accommodate rapid cell divisions during early embryogenesis is unclear. RNA localization coupled with translational control is a conserved mechanism that functions in diverse cellular processes. Control of mRNA localization and translation is mediated by RNA-binding proteins (RBPs). We find PLP protein expression is specifically promoted by an RNA-binding protein, Orb, during embryogenesis; moreover, plp mRNA interacts with Orb. Importantly, we find overexpression of full-length PLP can rescue cell division defects and embryonic lethality caused by orb depletion. We aim to uncover the mechanisms underlying embryonic plp mRNA localization and function and how Orb regulates plp translation.


Cell Reports ◽  
2021 ◽  
Vol 36 (10) ◽  
pp. 109685
Author(s):  
Sebastian Markmiller ◽  
Shashank Sathe ◽  
Kari L. Server ◽  
Thai B. Nguyen ◽  
Amit Fulzele ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Manasi Agrawal ◽  
Kristy Welshhans

In the past two decades, significant progress has been made in our understanding of mRNA localization and translation at distal sites in axons and dendrites. The existing literature shows that local translation is regulated in a temporally and spatially restricted manner and is critical throughout embryonic and post-embryonic life. Here, recent key findings about mRNA localization and local translation across the various stages of neural development, including neurogenesis, axon development, and synaptogenesis, are reviewed. In the early stages of development, mRNAs are localized and locally translated in the endfeet of radial glial cells, but much is still unexplored about their functional significance. Recent in vitro and in vivo studies have provided new information about the specific mechanisms regulating local translation during axon development, including growth cone guidance and axon branching. Later in development, localization and translation of mRNAs help mediate the major structural and functional changes that occur in the axon during synaptogenesis. Clinically, changes in local translation across all stages of neural development have important implications for understanding the etiology of several neurological disorders. Herein, local translation and mechanisms regulating this process across developmental stages are compared and discussed in the context of function and dysfunction.


Sign in / Sign up

Export Citation Format

Share Document