1 Molecular Biology of Asexual Sporulation in Filamentous Fungi

Author(s):  
Hee-Soo Park ◽  
Jae-Hyuk Yu
mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Ming-Yueh Wu ◽  
Matthew E. Mead ◽  
Mi-Kyung Lee ◽  
Erin M. Ostrem Loss ◽  
Sun-Chang Kim ◽  
...  

ABSTRACTAsexual sporulation is fundamental to the ecology and lifestyle of filamentous fungi and can facilitate both plant and human infection. InAspergillus, the production of asexual spores is primarily governed by the BrlA→AbaA→WetA regulatory cascade. The final step in this cascade is controlled by the WetA protein and governs not only the morphological differentiation of spores but also the production and deposition of diverse metabolites into spores. While WetA is conserved across the genusAspergillus, the structure and degree of conservation of thewetAgene regulatory network (GRN) remain largely unknown. We carried out comparative transcriptome analyses of comparisons betweenwetAnull mutant and wild-type asexual spores in three representative species spanning the diversity of the genusAspergillus:A. nidulans,A. flavus, andA. fumigatus. We discovered that WetA regulates asexual sporulation in all three species via a negative-feedback loop that represses BrlA, the cascade’s first step. Furthermore, data from chromatin immunoprecipitation sequencing (ChIP-seq) experiments inA. nidulansasexual spores suggest that WetA is a DNA-binding protein that interacts with a novel regulatory motif. Several global regulators known to bridge spore production and the production of secondary metabolites show species-specific regulatory patterns in our data. These results suggest that the BrlA→AbaA→WetA cascade’s regulatory role in cellular and chemical asexual spore development is functionally conserved but that thewetA-associated GRN has diverged duringAspergillusevolution.IMPORTANCEThe formation of resilient spores is a key factor contributing to the survival and fitness of many microorganisms, including fungi. In the fungal genusAspergillus, spore formation is controlled by a complex gene regulatory network that also impacts a variety of other processes, including secondary metabolism. To gain mechanistic insights into how fungal spore formation is controlled acrossAspergillus, we dissected the gene regulatory network downstream of a major regulator of spore maturation (WetA) in three species that span the diversity of the genus: the genetic modelA. nidulans, the human pathogenA. fumigatus, and the aflatoxin producerA. flavus. Our data show that WetA regulates asexual sporulation in all three species via a negative-feedback loop and likely binds a novel regulatory element that we term the WetA response element (WRE). These results shed light on how gene regulatory networks in microorganisms control important biological processes and evolve across diverse species.


1993 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
J.R.S. Fincham

2018 ◽  
Author(s):  
Ming-Yueh Wu ◽  
Matthew E. Mead ◽  
Mi-Kyung Lee ◽  
Sun-Chang Kim ◽  
Antonis Rokas ◽  
...  

AbstractAsexual sporulation is fundamental to the ecology and lifestyle of filamentous fungi and can facilitate both plant and human infection. InAspergillus, the production of asexual spores is primarily governed by the BrlA→AbaA→WetA regulatory cascade. The final step in this cascade is controlled by the WetA protein and not only governs the morphological differentiation of spores but also the production and deposition of diverse metabolites into spores. While WetA is conserved across the genusAspergillus, the structure and degree of conservation of thewetAgene regulatory network (GRN) remains largely unknown. We carried out comparative transcriptome analyses betweenwetAnull mutant and wild type asexual spores in three representative species spanning the diversity of the genusAspergillus:A. nidulans, A. flavus, andA. fumigatus. We discovered that WetA regulates asexual sporulation in all three species via a negative feedback loop that represses BrlA, the cascade’s first step. Furthermore, ChIP-seq experiments inA. nidulansasexual spores suggest that WetA is a DNA-binding protein that interacts with a novel regulatory motif. Several global regulators known to bridge spore production and the production of secondary metabolites show species-specific regulatory patterns in our data. These results suggest that the BrlA→AbaA→WetA cascade’s regulatory role in cellular and chemical asexual spore development is functionally conserved, but that thewetA-associated GRN has diverged duringAspergillusevolution.


Nature ◽  
1986 ◽  
Vol 323 (6091) ◽  
pp. 757-758
Author(s):  
John Fincham

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yang Li ◽  
Jens Heller ◽  
A. Pedro Gonçalves ◽  
N. Louise Glass

ABSTRACT Filamentous fungi undergo somatic cell fusion to create a syncytial, interconnected hyphal network which confers a fitness benefit during colony establishment. However, barriers to somatic cell fusion between genetically different cells have evolved that reduce invasion by parasites or exploitation by maladapted genetic entities (cheaters). Here, we identified a predicted mannosyltransferase, glycosyltransferase family 69 protein (GT69-2) that was required for somatic cell fusion in Neurospora crassa. Cells lacking GT69-2 prematurely ceased chemotropic signaling and failed to complete cell wall dissolution and membrane merger in pairings with wild-type cells or between Δgt69-2 cells (self fusion). However, loss-of-function mutations in the linked regulator of cell fusion and cell wall remodeling-1 (rfw-1) locus suppressed the self-cell-fusion defects of Δgt69-2 cells, although Δgt69-2 Δrfw-1 double mutants still failed to undergo fusion with wild-type cells. Both GT69-2 and RFW-1 localized to the Golgi apparatus. Genetic analyses indicated that RFW-1 negatively regulates cell wall remodeling-dependent processes, including cell wall dissolution during cell fusion, separation of conidia during asexual sporulation, and conidial germination. GT69-2 acts as an antagonizer to relieve or prevent negative functions on cell fusion by RFW-1. In Neurospora species and N. crassa populations, alleles of gt69-2 were highly polymorphic and fell into two discrete haplogroups. In all isolates within haplogroup I, rfw-1 was conserved and linked to gt69-2. All isolates within haplogroup II lacked rfw-1. These data indicated that gt69-2/rfw-1 are under balancing selection and provide new mechanisms regulating cell wall remodeling during cell fusion and conidial separation. IMPORTANCE Cell wall remodeling is a dynamic process that balances cell wall integrity versus cell wall dissolution. In filamentous fungi, cell wall dissolution is required for somatic cell fusion and conidial separation during asexual sporulation. In the filamentous fungus Neurospora crassa, allorecognition checkpoints regulate the cell fusion process between genetically different cells. Our study revealed two linked loci with transspecies polymorphisms and under coevolution, rfw-1 and gt69-2, which form a coordinated system to regulate cell wall remodeling during somatic cell fusion, conidial separation, and asexual spore germination. RFW-1 acts as a negative regulator of these three processes, while GT69-2 functions antagonistically to RFW-1. Our findings provide new insight into the mechanisms involved in regulation of fungal cell wall remodeling during growth and development.


Sign in / Sign up

Export Citation Format

Share Document