global regulators
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 52)

H-INDEX

54
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Anjali Mahilkar ◽  
Pavithra Venkataraman ◽  
Akshat Mall ◽  
Supreet Saini

Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.


2022 ◽  
Author(s):  
Maciej Bak ◽  
Erik van Nimwegen ◽  
Ralf Schmidt ◽  
Mihaela Zavolan ◽  
Andreas J Gruber

Maturation of eukaryotic pre-mRNAs via splicing, 3' end cleavage and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although over 1'500 proteins are associated with RNAs in human cells, their binding motifs, targets and functions still remain to be elucidated, especially in the complex environment of human tissues and in the context of diseases. To overcome the lack of methods for systematic and automated detection of sequence motif-guided changes in pre-mRNA processing based on RNA sequencing (RNA-seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). We demonstrate MAPP's functionality by applying it to RNA-seq data from 284 RBP knock-down experiments in the ENCODE project, from which MAPP not only infers position-dependent impact profiles of known regulators, but also reveals RBPs that modulate both the inclusion of cassette exons and the poly(A) site choice. Among these, the Polypyrimidine Tract Binding Protein 1 (PTBP1) has a similar activity in glioblastoma samples. This highlights the ability of MAPP to unveil global regulators of mRNA processing under physiological and pathological conditions.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhiyi Yang ◽  
Fengchen Li ◽  
Guohan Chai

The significant impact brought by a severe nuclear accident at the Fukushima Daiichi Nuclear Power Plant (NPP) in Japan in March 2011 has made global regulators to review the requirements against severe accidents. In China, comprehensive safety inspection and external hazard safety margin assessment on NPPs were carried out, regulatory requirements on improvement measures for NPPs based on the inspection were given, the nuclear safety 5-year plan was made and executed, and the safety requirements on the new NPP design were drafted. The Nuclear Safety Law came into effect in 2018. The “Code on the Safety of Nuclear Power Plant Design” (HAF102) was revised in 2016, and relevant safety guides were developed. In this article, improvement actions and requirements about NPP safety in China over the past 10 years were reviewed, and the nuclear safety philosophy and requirements including practical elimination, classification of accident conditions, and defense in depth portable equipment were elaborated. In summary, some suggestions of NPP safety in China in the future were provided.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marta A. Lages ◽  
Manuel L. Lemos ◽  
Miguel Balado

The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Robin Ruepp ◽  
Roland Frötschl ◽  
Robert Bream ◽  
Maria Filancia ◽  
Thomas Girard ◽  
...  

The unexpected detection of nitrosamine impurities in human medicines has recently seen global regulators act to understand the risks of these contaminations to patients and to limit their presence. Over 300 nitrosamines are known, many of which are highly potent mutagenic carcinogens. Regulators first became aware of the presence of nitrosamines in EU medicines in 2018, with reports of detection of N-nitroso-dimethylamine (NDMA) in valsartan from one manufacturer. A subsequent EU review of all valsartan medicines was triggered by the European Medicines Agency (EMA) and was later extended to other angiotensin receptor blockers/sartans. A separate review was also started for ranitidine medicines. This was followed by an EU-wide examination of the risk of presence of nitrosamines in all human medicines. This article reflects on the investigation of the EU regulatory network into the presence of nitrosamines and the scientific knowledge informing recommendations for developers on how to limit nitrosamines in medicines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julia Gallego-Jara ◽  
Álvaro Ortega ◽  
Gema Lozano Terol ◽  
Rosa A. Sola Martínez ◽  
Manuel Cánovas Díaz ◽  
...  

Sirtuins are deacetylase enzymes widely distributed in all domains of life. Although for decades they have been related only to histones deacetylation in eukaryotic organisms, today they are considered global regulators in both prokaryotes and eukaryotes. Despite the important role of sirtuins in humans, the knowledge about bacterial sirtuins is still limited. Several proteomics studies have shown that bacterial sirtuins deacetylate a large number of lysines in vivo, although the effect that this deacetylation causes in most of them remains unknown. To date, only the regulation of a few bacterial sirtuin substrates has been characterized, being their metabolic roles widely distributed: carbon and nitrogen metabolism, DNA transcription, protein translation, or virulence. One of the most current topics on acetylation and deacetylation focuses on studying stoichiometry using quantitative LC-MS/MS. The results suggest that prokaryotic sirtuins deacetylate at low stoichiometry sites, although more studies are needed to know if it is a common characteristic of bacterial sirtuins and its biological significance. Unlike eukaryotic organisms, bacteria usually have one or few sirtuins, which have been reported to have closer phylogenetic similarity with the human Sirt5 than with any other human sirtuin. In this work, in addition to carrying out an in-depth review of the role of bacterial sirtuins in their physiology, a phylogenetic study has been performed that reveals the evolutionary differences between sirtuins of different bacterial species and even between homologous sirtuins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patricia Lucas-Elío ◽  
Luisa Raquel Molina-Quintero ◽  
Hengyi Xu ◽  
Antonio Sánchez-Amat

AbstractCRISPR-Cas systems are used by many prokaryotes to defend against invading genetic elements. In many cases, more than one CRISPR-Cas system co-exist in the same cell. Marinomonas mediterranea MMB-1 possesses two CRISPR-Cas systems, of type I–F and III-B respectively, which collaborate in phage resistance raising questions on how their expression is regulated. This study shows that the expression of both systems is controlled by the histidine kinase PpoS and a response regulator, PpoR, identified and cloned in this study. These proteins show similarity to the global regulators BarA/UvrY. In addition, homologues to the sRNAs CsrB and CsrC and the gene coding for the post-transcriptional repressor CsrA have been also identified indicating the conservation of the elements of the BarA/UvrY regulatory cascade in M. mediterranea. RNA-Seq analyses have revealed that all these genetics elements are regulated by PpoS/R supporting their participation in the regulatory cascade. The regulation by PpoS and PpoR of the CRISPR-Cas systems plays a role in phage defense since mutants in these proteins show an increase in phage sensitivity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Katherine Kirkptrick ◽  
Aaron Stevens ◽  
Jacob Gerber ◽  
Margaret Nettesheim ◽  
Sebastian Bellm

Purpose To evaluate the global anti-money laundering regulation of digital assets and cryptocurrencies. Design/methodology/approach This article provides an analysis of macro trends in digital asset money laundering regulation and explores the regulatory frameworks in some of the leading international crypto markets. Findings As the popularity and public adoption of digital assets have grown, global regulators have turned their attention to the risks of anti-money laundering. Monitoring the evolving international regulatory landscape is essential for organizations looking to successfully take advantage of digital asset-related investment opportunities. Practical implications Market participants should understand all applicable laws and procedures before they decide to enter the digital asset market. These considerations can become even more complex as businesses interact with multiple international regulators. Originality/value This article is designed to help investors understand the global anti-money laundering regulatory landscape regarding digital assets, particularly for those institutions interested in diversifying with crypto-related investment opportunities.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J. Paul Forrester ◽  
Mary Jo N. Miller

Purpose Summarize and review the key developments during 2021 relating to transition of the London InterBank Offered Rate (LIBOR) to alternative risk-free rates, in accordance with the guidance of global regulators and market participants. Design/methodology/approach Outlines and explains four key events to date during 2021 that are instrumental to the success of LIBOR transition, including the ISDA 2020 IBOR Protocol and Supplement, the 5 March 2021 announcements by ICE Benchmark Administration and the Financial Conduct Authority, the transition of interdealer swap conventions from LIBOR to SOFR, and the ARRC endorsement of the CME Group SOFR term rate. Findings The global adherence to the ISDA Protocol and Supplement, the successful launch of “SOFR First” and other “RFR First” swaps convention transitions, and the ARRC’s endorsement of CME’s SOFR term rate have given the market the clarity and tools that it needs to complete the transition away from LIBOR by the deadlines fixed by the 5 March 2021 benchmark transition event. Practical implications It now is clear that market participants globally have the resources to, and must, move to adopt alternative reference rates and related operational systems and other infrastructure to cease origination of new LIBOR-linked contracts after 31 December 2021. The ARRC’s endorsement of the SOFR term rate for business loans and related derivatives and securitizations is a critical positive development for the structured finance market. Originality/value Expert analysis and guidance from experienced finance lawyers.


2021 ◽  
Author(s):  
Martyna Gongerowska-Jac ◽  
Marcin Jan Szafran ◽  
Jakub Mikołajczyk ◽  
Justyna Szymczak ◽  
Magdalena Bartyńska ◽  
...  

Bacterial gene expression is controlled at multiple levels, with chromosome supercoiling being one of the most global regulators. Global DNA supercoiling is maintained by the orchestrated action of topoisomerases. In Streptomyces, mycelial soil bacteria with a complex life cycle, topoisomerase I depletion led to elevated chromosome supercoiling, changed expression of significant fraction of genes, delayed growth and blocked sporulation. To identify supercoiling-induced sporulation regulators, we searched for S. coelicolor transposon mutants that were able to restore sporulation despite high chromosome supercoiling. We established that transposon insertion in genes encoding a novel two-component system named SatKR reversed the sporulation blockage resulting from topoisomerase I depletion. Transposition in satKR abolished the transcriptional induction of the genes within the so-called supercoiling-hypersensitive cluster (SHC). Moreover, we found that activated SatR also induced the same set of SHC genes under normal supercoiling conditions. We determined that the expression of genes in this region impacted S. coelicolor growth and sporulation. Interestingly, among the associated products is another two-component system (SitKR), indicating the potential for cascading regulatory effects driven by the SatKR and SitKR two-component systems. Thus, we demonstrated the concerted activity of chromosome supercoiling and a hierarchical two-component signalling system that impacts gene activity governing Streptomyces growth and sporulation.


Sign in / Sign up

Export Citation Format

Share Document