scholarly journals Finiteness Properties of Affine Difference Algebraic Groups

Author(s):  
Michael Wibmer

Abstract We establish several finiteness properties of groups defined by algebraic difference equations. One of our main results is that a subgroup of the general linear group defined by possibly infinitely many algebraic difference equations in the matrix entries can indeed be defined by finitely many such equations. As an application, we show that the difference ideal of all difference algebraic relations among the solutions of a linear differential equation is finitely generated.

1953 ◽  
Vol 1 (3) ◽  
pp. 101-110 ◽  
Author(s):  
A. R. Mitchell ◽  
D. E. Rutherford

§ 1. When a numerical method of obtaining an approximate solution of a linear differential equation is employed, the process involves two distinct types of approximation. The region of integration having been covered with a regular net, the differential equation and the appropriate boundary conditions are replaced by finite difference equations which are linear equations in the values of the dependent variable at the nodes of the net.


2013 ◽  
Vol 13 (4) ◽  
pp. 671-700 ◽  
Author(s):  
Andrey Minchenko ◽  
Alexey Ovchinnikov ◽  
Michael F. Singer

AbstractWe deal with aspects of direct and inverse problems in parameterized Picard–Vessiot (PPV) theory. It is known that, for certain fields, a linear differential algebraic group (LDAG) $G$ is a PPV Galois group over these fields if and only if $G$ contains a Kolchin-dense finitely generated group. We show that, for a class of LDAGs $G$, including unipotent groups, $G$ is such a group if and only if it has differential type $0$. We give a procedure to determine if a parameterized linear differential equation has a PPV Galois group in this class and show how one can calculate the PPV Galois group of a parameterized linear differential equation if its Galois group has differential type $0$.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


1980 ◽  
Vol 25 (92) ◽  
pp. 229-246 ◽  
Author(s):  
L. W. Morland ◽  
I. R. Johnson

AbstractSteady plane flow under gravity of a symmetric ice sheet resting on a horizontal rigid bed, subject to surface accumulation and ablation, basal drainage, and basal sliding according to a shear-traction-velocity power law, is treated. The surface accumulation is taken to depend on height, and the drainage and sliding coefficient also depend on the height of overlying ice. The ice is described as a general non-linearly viscous incompressible fluid, with illustrations presented for Glen’s power law, the polynomial law of Colbeck and Evans, and a Newtonian fluid. Uniform temperature is assumed so that effects of a realistic temperature distribution on the ice response are not taken into account. In dimensionless variables a small paramter ν occurs, but the ν = 0 solution corresponds to an unbounded sheet of uniform depth. To obtain a bounded sheet, a horizontal coordinate scaling by a small factor ε(ν) is required, so that the aspect ratio ε of a steady ice sheet is determined by the ice properties, accumulation magnitude, and the magnitude of the central thickness. A perturbation expansion in ε gives simple leading-order terms for the stress and velocity components, and generates a first order non-linear differential equation for the free-surface slope, which is then integrated to determine the profile. The non-linear differential equation can be solved explicitly for a linear sliding law in the Newtonian case. For the general law it is shown that the leading-order approximation is valid both at the margin and in the central zone provided that the power and coefficient in the sliding law satisfy certain restrictions.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


Sign in / Sign up

Export Citation Format

Share Document