Fitting Phase-Type Distributions and Markovian Arrival Processes: Algorithms and Tools

Author(s):  
Hiroyuki Okamura ◽  
Tadashi Dohi
2015 ◽  
Vol 52 (3) ◽  
pp. 826-840 ◽  
Author(s):  
Fabrice Guillemin ◽  
Bruno Sericola

We study congestion periods in a finite fluid buffer when the net input rate depends upon a recurrent Markov process; congestion occurs when the buffer content is equal to the buffer capacity. Similarly to O'Reilly and Palmowski (2013), we consider the duration of congestion periods as well as the associated volume of lost information. While these quantities are characterized by their Laplace transforms in that paper, we presently derive their distributions in a typical stationary busy period of the buffer. Our goal is to compute the exact expression of the loss probability in the system, which is usually approximated by the probability that the occupancy of the infinite buffer is greater than the buffer capacity under consideration. Moreover, by using general results of the theory of Markovian arrival processes, we show that the duration of congestion and the volume of lost information have phase-type distributions.


2014 ◽  
Vol 24 (3) ◽  
pp. 453-470 ◽  
Author(s):  
András Meszáros ◽  
János Papp ◽  
Miklós Telek

Abstract Recent developments of matrix analytic methods make phase type distributions (PHs) and Markov Arrival Processes (MAPs) promising stochastic model candidates for capturing traffic trace behaviour and for efficient usage in queueing analysis. After introducing basics of these sets of stochastic models, the paper discusses the following subjects in detail: (i) PHs and MAPs have different representations. For efficient use of these models, sparse (defined by a minimal number of parameters) and unique representations of discrete time PHs and MAPs are needed, which are commonly referred to as canonical representations. The paper presents new results on the canonical representation of discrete PHs and MAPs. (ii) The canonical representation allows a direct mapping between experimental moments and the stochastic models, referred to as moment matching. Explicit procedures are provided for this mapping. (iii) Moment matching is not always the best way to model the behavior of traffic traces. Model fitting based on appropriately chosen distance measures might result in better performing stochastic models. We also demonstrate the efficiency of fitting procedures with experimental results


2015 ◽  
Vol 52 (03) ◽  
pp. 826-840 ◽  
Author(s):  
Fabrice Guillemin ◽  
Bruno Sericola

We study congestion periods in a finite fluid buffer when the net input rate depends upon a recurrent Markov process; congestion occurs when the buffer content is equal to the buffer capacity. Similarly to O'Reilly and Palmowski (2013), we consider the duration of congestion periods as well as the associated volume of lost information. While these quantities are characterized by their Laplace transforms in that paper, we presently derive their distributions in a typical stationary busy period of the buffer. Our goal is to compute the exact expression of the loss probability in the system, which is usually approximated by the probability that the occupancy of the infinite buffer is greater than the buffer capacity under consideration. Moreover, by using general results of the theory of Markovian arrival processes, we show that the duration of congestion and the volume of lost information have phase-type distributions.


2014 ◽  
Vol 30 (4) ◽  
pp. 576-597 ◽  
Author(s):  
V. Ramaswami ◽  
N. C. Viswanath

2004 ◽  
Vol 36 (1) ◽  
pp. 116-138 ◽  
Author(s):  
Yonit Barron ◽  
Esther Frostig ◽  
Benny Levikson

An R-out-of-N repairable system, consisting of N independent components, is operating if at least R components are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


2002 ◽  
Vol 30 (3) ◽  
pp. 6-8 ◽  
Author(s):  
Alma Riska ◽  
Vesselin Diev ◽  
Evgenia Smirni

1987 ◽  
Vol 24 (3) ◽  
pp. 696-708 ◽  
Author(s):  
Arie Hordijk ◽  
Ad Ridder

A general method to obtain insensitive upper and lower bounds for the stationary distribution of queueing networks is sketched. It is applied to an overflow model. The bounds are shown to be valid for service distributions with decreasing failure rate. A characterization of phase-type distributions with decreasing failure rate is given. An approximation method is proposed. The methods are illustrated with numerical results.


2020 ◽  
Vol 23 (5) ◽  
pp. 1431-1451 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Martin Bladt ◽  
Mogens Bladt

Abstract We extend the Kulkarni class of multivariate phase–type distributions in a natural time–fractional way to construct a new class of multivariate distributions with heavy-tailed Mittag-Leffler(ML)-distributed marginals. The approach relies on assigning rewards to a non–Markovian jump process with ML sojourn times. This new class complements an earlier multivariate ML construction [2] and in contrast to the former also allows for tail dependence. We derive properties and characterizations of this class, and work out some special cases that lead to explicit density representations.


Sign in / Sign up

Export Citation Format

Share Document