Paraconsistent Artificial Neural Network for Structuring Statistical Process Control in Electrical Engineering

Author(s):  
João Inácio da Silva Filho ◽  
Clovis Misseno da Cruz ◽  
Alexandre Rocco ◽  
Dorotéa Vilanova Garcia ◽  
Luís Fernando P. Ferrara ◽  
...  
2016 ◽  
Vol 11 (2) ◽  
pp. 113-122
Author(s):  
Wahyu Widji Pamungkas ◽  
Syamsul Maarif ◽  
Tun Tedja Irawadi ◽  
Yandra Arkeman

Indonesia is the largest exporter of palm oil in the world, as the largest producer Indonesia still havemany problems. The problem caused by incomparable between the growth of upstream and downstreampalm oil industries. This impact to low added value of palm oil, then Indonesia exports palm oil in crudeform. On the other hand, On the other hand , orientation export of this commodity is also prone of barrier,because Indonesia was not the price setter of this commodity in the international market. Therefore it isimportant to monitor and predict the development of national palm oil production volume in order to takegood anticipation. This research develop a framework model adaptive threshold to monitor the growing ofnational palm oil production volume with techniques of statistical process control (SPC) and back propagationartificial neural network (ANN - BP) methods. Historical data production volume period from 1967 to 2015was used as a base of the behavior as data to determine the threshold and prediction volume for nextperiods. The formation of the threshold value was based on the behavior of the historical data, which areoriented by the epicenter of the average value in the last two periods .Through mapping of data historicalperiod values, existing and forecast values with adaptive threshold can show tolerant level for the threshold.Furthermore, based on the analysis, it is known that the prediction of 2016 to 2018 period, there will behappen the dynamics production volume of national palm oil within tolerance threshold. The values of thesepredictions generated from the simulation model predictions of ANN-BP with the level very good of validationmodel, demonstrated the level of squared errors is very small1 in the MSE = 0.00021136 with a degree ofoutput correlation and the target is very strong2 with R Validation is 99.98 percent.Keywords: adaptive threshold, statistical process control, artificial neural network, national palm oilproduction.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yuehjen E. Shao

Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system.


2021 ◽  
Vol 17 (2) ◽  
pp. 144
Author(s):  
Fathiah Zakaria ◽  
Siti Aishah Che Kar ◽  
Rina Abdullah ◽  
Syila Izawana Ismail ◽  
Nur Idawati Md Enzai

Abstract: This paper presents a study of correlation between subjects of Diploma in Electrical Engineering (Electronics/Power) at Universiti Teknologi MARA(UiTM) Cawangan Terengganu using Artificial Neural Network (ANN). The analysis was done to see the effect of mathematical subjects (Pre-calculus and Calculus 1) and core subject (Electric Circuit 1) on Electronics 1. Electronics 1 is found to be a core subject with the history of high failure rate percentage (more than 25%) in previous semesters. This research has been conducted on current final semester students (Semester 5). Seven (7) models of ANN are developed to observe the correlation between the subjects. In order to develop an ANN model, ANN design and parameters need to be chosen to find the best model. In this study, historical data from students’ database were used for training and testing purpose. Total number of datasets used are 58 sets. 70% of the datasets are used for training process and 30% of the datasets are used for testing process. The Regression Coefficient, (R) values from the developed models was observed and analyzed to see the effect of the subject on the performance of students. It can be proven that Electric Circuit 1 has significant correlation with the Electronics 1 subject respected to the highest R value obtained (0.8100). The result obtained proves that student’s understanding on Electric Circuit 1 subject (taken during semester 2) has direct impact on the performance of students on Electronics 1 subject (taken during semester 3). Hence, early preventive measures could be taken by the respective parties.    Keywords: Artificial neural network, Diploma in Electrical Engineering, Graduate on time, Correlation.


Sign in / Sign up

Export Citation Format

Share Document