process disturbances
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Christian Steinfelder ◽  
Johann Acksteiner ◽  
Christina Guilleaume ◽  
Alexander Brosius

AbstractClinching is a joining process that is becoming more and more important in industry due to the increasing use of multi-material designs. Despite the already widespread use of the process, there is still a need for research to understand the mechanisms and design of clinched joints. In contrast to the tool parameters, process and material disturbances have not yet been investigated to a relatively large extent. However, these also have a great influence on the properties and applicability of clinching. The effect of process disturbances on the clinched joint are investigated with numerical and experimental methods. The investigated process variations are the history of the sheets using the pre-hardening of the material, different sheet thicknesses, sheet arrangements and punch strokes. For the consideration of the material history, a specimen geometry for pre-stretching specimens in uniaxial tension is used, from which the pre-stretched secondary specimens are taken. A finite element model is set up for the numerical investigations. Suitable clinching tools are selected. With the simulation, selected process influences can be examined. The effort of the numerical investigations is considerably reduced with the help of a statistical experimental design according to Taguchi. To confirm the simulation results, experimental investigations of the clinch point geometry by using micrographs and the shear strength of the clinched joint are performed. The analysis of the influence of difference disturbance factors on the clinching process demonstrate the importance of the holistic view of the clinching process.


Author(s):  
Vishal Vishnoi ◽  
Sheela Tiwari ◽  
Rajesh Kumar Singla

This article introduces the design of split range control and fuzzy logic control for temperature control of the MISO (multiple input single output) water tank scheme. A multiple input single output (MISO) system is considered for the proposed work as most of the practical systems comprise of numerous MISO system. Investigations are conducted on the impact of control parameters, system dynamics and process disturbances. From the simulation outcomes, it is clearly inferred that the fuzzy logic controller outperformed split range control over all parameters.


This article introduces the design of split range control and fuzzy logic control for temperature control of the MISO (multiple input single output) water tank scheme. A multiple input single output (MISO) system is considered for the proposed work as most of the practical systems comprise of numerous MISO system. Investigations are conducted on the impact of control parameters, system dynamics and process disturbances. From the simulation outcomes, it is clearly inferred that the fuzzy logic controller outperformed split range control over all parameters.


Author(s):  
Alexander Kindsmüller ◽  
Agnes Schrepfer ◽  
Jens Stahl ◽  
Isabella Pätzold ◽  
Anian Nürnberger ◽  
...  

AbstractShear cutting is one of the most widely used manufacturing processes in the production of sheet metal components. The reasons for this are the high output volume combined with low costs per part. The profitability of this process is significantly influenced by the lifetime of the active elements and the occurrence of unexpected process disturbances. While there are already many publications on the former, there are only few examinations on the wide spread process disturbance of slug pulling, which describes the phenomenon where the cut-out part is pulled upwards again during the punch return stroke. In particular, the different forces on the slug that cause this phenomenon have not yet been measured individually and independently of one another in one single tool. Thus, a shear cutting tool was developed that enables the measurement of the individual forces on the slug depending on various process parameters. Following, single stroke experiments were carried out to determine these forces and establish relationships between the process parameters, the characteristics of the slug and the measured forces. Finally, the interaction of all partial forces depending on selected process parameters is discussed in order to classify the relevance of every single force with regard to the occurrence of slug pulling. This understanding of the process is necessary in order to make a well-founded decision when designing future tools or selecting available remedial measures to avoid slug pulling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Christine Trego ◽  
Paul G. McAteer ◽  
Corine Nzeteu ◽  
Therese Mahony ◽  
Florence Abram ◽  
...  

Advances in null-model approaches have resulted in a deeper understanding of community assembly mechanisms for a variety of complex microbiomes. One under-explored application is assembly of communities from the built-environment, especially during process disturbances. Anaerobic digestion for biological wastewater treatment is often underpinned by retaining millions of active granular biofilm aggregates. Flotation of granules is a major problem, resulting in process failure. Anaerobic aggregates were sampled from three identical bioreactors treating dairy wastewater. Microbiome structure was analysed using qPCR and 16S rRNA gene amplicon sequencing from DNA and cDNA. A comprehensive null-model approach quantified assembly mechanisms of floating and settled communities. Significant differences in diversity were observed between floating and settled granules, in particular, we highlight the changing abundances of Methanosaeta and Lactococcus. Both stochastic and deterministic processes were important for community assembly. Homogeneous selection was the primary mechanism for all categories, but dispersal processes also contributed. The lottery model was used to identify clade-level competition driving community assembly. Lottery “winners” were identified with different winners between floating and settled groups. Some groups changed their winner status when flotation occurred. Spirochaetaceae, for example, was only a winner in settled biomass (cDNA-level) and lost its winner status during flotation. Alternatively, Arcobacter butzerli gained winner status during flotation. This analysis provides a deeper understanding of changes that occur during process instabilities and identified groups which may be washed out—an important consideration for process control.


2021 ◽  
Vol 883 ◽  
pp. 285-293
Author(s):  
Jens Stahl ◽  
Isabella Pätzold ◽  
Lucas van den Bosch ◽  
Alexander Kindsmüller ◽  
Roland Golle ◽  
...  

Frictional forces in sheet metal blanking are central in different aspects, e.g. in wear prediction, validation of simulation models or in so called slug pulling. The latter is a phenomenon where the slug is pulled out of the die by the punch after the sheet metal is separated. This leads to process disturbances reaching from a blocked belt feeder up to severe tool damage caused by the simultaneous cutting of the slug and the sheet metal strip. A sufficiently high frictional force between the slug and the die prevents this effect. Despite its importance, this force and its causes have not yet been investigated in detail. A method was developed in this paper to measure the frictional force between slug and die. A shear cutting tool with an integrated piezoelectric load cell and an inductive position sensor was used on a stamping press to cut sheet metal made of CuSn6 (R350, thickness 1 mm). The die clearance, the punch edge radii and the lubrication conditions were varied. A larger die clearance resulted in a lower frictional force while a larger punch edge radius increased it significantly. Lubrication reduced the frictional force, especially for small die clearances. Finally, the cause of the frictional force was investigated by identifying the relevant springback modes of the slugs. This was carried out by correlating the slugs' deflection, oversize, and clean cut height with the frictional force. Especially the slug oversize, i.e. the difference between the slug's diameter and the die's inner diameter, revealed a strong correlation. Calculations showed that the deformation in radial direction is the main cause of the frictional force between slug and die. It suggests that the slug oversize is a good measure for the magnitude of the frictional force.


Author(s):  
Simon Schmid ◽  
Johannes Krabusch ◽  
Thomas Schromm ◽  
Shi Jieqing ◽  
Stefan Ziegelmeier ◽  
...  

AbstractAdditive manufacturing (AM) offers unique possibilities in comparison to conventional manufacturing processes. For example, complex parts can be manufactured without tools. For metals, the most commonly used AM process is laser-powder bed fusion (L-PBF). The L-PBF process is prone to process disturbances, hence maintaining a consistent part quality remains an important subject within current research. An established indicator for quantifying process changes is the dimension of melt pools, which depends on the energy input and the cooling conditions. The melt pool geometry is normally measured manually in cross sections of solidified welding seams. This paper introduces a new approach for the automated visual measuring of melt pools in cross-sections of parts manufactured by L-PBF. The melt pools are first segmented in the images and are then measured. Since the melt pools have a heterogeneous appearance, segmentation with common digital image processing is difficult, deep learning was applied in this project. With the presented approach, the melt pools can be measured over the whole cross section of the specimen. Furthermore, remelted melt pools, which are only partly visible, are evaluated. With this automated approach, a high number of melt pools in each cross-section can be measured, which allows the examination of trends over the build direction in a specimen and results in better statistics. Furthermore, deviations in the energy input can be estimated via the measured melt pool dimensions.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 472
Author(s):  
Florian Lukas Vetter ◽  
Steffen Zobel-Roos ◽  
Jochen Strube

This study proposes a reliable inline PAT concept for the simultaneous monitoring of different product components after chromatography. The feed for purification consisted of four main components, IgG monomer, dimer, and two lower molecular weight components of 4.4 kDa and 1 kDa molecular weight. The proposed measurement setup consists of a UV–VIS diode-array detector and a fluorescence detector. Applying this system, a R2 of 0.93 for the target component, a R2 of 0.67 for the dimer, a R2 of 0.91 for the first side component and a R2 of 0.93 for the second side component is achieved. Root mean square error for IgG monomer was 0.027 g/L, for dimer 0.0047 g/L, for side component 1 0.016 g/L and for the side component 2 0.014 g/L. The proposed measurement concept tracked component concentration reliably down to 0.05 g/L. Zero-point fluctuations were kept within a standard deviation of 0.018 g/L for samples with no IgG concentration but with side components present, allowing a reliable detection of the target component. The main reason inline concentration measurements have not been established yet, is the false-positive measurement of target components when side components are present. This problem was eliminated using the combination of fluorescence and UV–VIS data for the test system. The use of this measurement system is simulated for the test system, allowing an automatic fraction cut at 0.05 g/L. In this simulation a consistent yield of >99% was achieved. Process disturbances for processed feed volume, feed purity and feed IgG concentration can be compensated with this setup. Compared to a timed process control, yield can be increased by up to 12.5%, if unexpected process disturbances occur.


2021 ◽  
Author(s):  
Damir Vrančić ◽  
Mikuláš Huba

The main tasks of control in various industries are either tracking the setpoint changes or rejecting the process disturbances. While both aim at maintaining the process output at the desired setpoint, the controller parameters optimised for setpoint tracking are generally not suitable for optimal disturbance rejection. The overall control performance can be improved to some extent by using simpler 2-DOF PID controllers. Such a controller structure allows the disturbance rejection to be optimised, while it also improves the setpoint tracking performance with additional controller parameters (usually through the setpoint weighting factors). Since such 2-DOF structures are usually relatively simple, the optimization of tracking performance is usually limited to the reduction of process overshoots instead of achieving an optimal (fast) tracking response. In this chapter, an alternative approach is presented in which the parameters of the PID controller are optimised for reference tracking, while the performance of the disturbance rejection is substantially increased by introducing a simple disturbance estimator approach. The mentioned estimator requires adding two simple blocks to the PID controller. The blocks are the second-order transfer functions whose parameters, including the PID controller parameters, can be calculated analytically from the process characteristic areas (also called process moments). The advantage of such an approach is that the mentioned areas can be analytically calculated directly from the process transfer function (of any order with time delay) or from the time response of the process when the steady state of the process is changed. Both of the above calculations are absolutely equivalent. Moreover, the output noise of the controller is under control as it is considered in the design of the controller and compensator. The closed loop results on several process models show that the proposed method with disturbance estimator has excellent tracking and disturbance rejection performance. The proposed controller structure and tuning method also compare favourably with some existing methods based on non-parametric description of the process.


2021 ◽  
Vol 76 (1) ◽  
pp. 5-18
Author(s):  
D. Sackmann ◽  
J. Heinzel ◽  
B. Karpuschewski

Abstract The manufacturing process of grinding generally leads to a thermo-mechanical influence on the surface integrity. In addition to the intended development of residual compressive stresses due to the finishing process, disturbances in the grinding process can lead to negative effects such as tensile residual stresses, tempering and even rehardening zones and significantly reduce the component lifetime. In industrial applications, the analysis of Barkhausen noise is becoming increasingly important for the detection of this unwanted thermo-mechanically influenced surface integrity. The non-destructive method reacts sensitively to changes in, for example, the residual stress state as well as the hardness. In addition, other material-, process- and metrology-related influences are described in literature. The investigations presented in this paper deal with the influence of different material states (case-hardening depth, surface carbon content and alloy composition) on the signals of the Barkhausen noise as a function of the surface integrity. It is shown that the signal level is significantly influenced by the material condition and thus individual limit values must be used for evaluation of the surface integrity. ◼


Sign in / Sign up

Export Citation Format

Share Document