A Data Mining and Visual Analytics Perspective on Sustainability-Oriented Infrastructure Planning

Author(s):  
Dimitri N. Mavris ◽  
Michael Balchanos ◽  
WoongJe Sung ◽  
Olivia J. Pinon
Author(s):  
Katrina E. Barkwell ◽  
Alfredo Cuzzocrea ◽  
Carson K. Leung ◽  
Ashley A. Ocran ◽  
Jennifer M. Sanderson ◽  
...  

2020 ◽  
Author(s):  
Alessandra Maciel Paz Milani ◽  
Fernando V. Paulovich ◽  
Isabel Harb Manssour

Analyzing and managing raw data are still a challenging part of the data analysis process, mainly regarding data preprocessing. Although we can find studies proposing design implications or recommendations for visualization solutions in the data analysis scope, they do not focus on challenges during the preprocessing phase. Likewise, the current Visual Analytics processes do not consider preprocessing an equally important stage in their process. Thus, with this study, we aim to contribute to the discussion of how we can use and combine methods of visualization and data mining to assist data analysts during the preprocessing activities. To achieve that, we introduce the Preprocessing Profiling Model for Visual Analytics, which contemplates a set of features to inspire the implementation of new solutions. In turn, these features were designed considering a list of insights we obtained during an interview study with thirteen data analysts. Our contributions can be summarized as offering resources to promote a shift to a visual preprocessing.


2021 ◽  
Author(s):  
Ekaterina Chuprikova ◽  
Abraham Mejia Aguilar ◽  
Roberto Monsorno

<p>Increasing agricultural production challenges, such as climate change, environmental concerns, energy demands, and growing expectations from consumers triggered the necessity for innovation using data-driven approaches such as visual analytics. Although the visual analytics concept was introduced more than a decade ago, the latest developments in the data mining capacities made it possible to fully exploit the potential of this approach and gain insights into high complexity datasets (multi-source, multi-scale, and different stages). The current study focuses on developing prototypical visual analytics for an apple variety testing program in South Tyrol, Italy. Thus, the work aims (1) to establish a visual analytics interface enabled to integrate and harmonize information about apple variety testing and its interaction with climate by designing a semantic model; and (2) to create a single visual analytics user interface that can turn the data into knowledge for domain experts. </p><p>This study extends the visual analytics approach with a structural way of data organization (ontologies), data mining, and visualization techniques to retrieve knowledge from an extensive collection of apple variety testing program and environmental data. The prototype stands on three main components: ontology, data analysis, and data visualization. Ontologies provide a representation of expert knowledge and create standard concepts for data integration, opening the possibility to share the knowledge using a unified terminology and allowing for inference. Building upon relevant semantic models (e.g., agri-food experiment ontology, plant trait ontology, GeoSPARQL), we propose to extend them based on the apple variety testing and climate data. Data integration and harmonization through developing an ontology-based model provides a framework for integrating relevant concepts and relationships between them, data sources from different repositories, and defining a precise specification for the knowledge retrieval. Besides, as the variety testing is performed on different locations, the geospatial component can enrich the analysis with spatial properties. Furthermore, the visual narratives designed within this study will give a better-integrated view of data entities' relations and the meaningful patterns and clustering based on semantic concepts.</p><p>Therefore, the proposed approach is designed to improve decision-making about variety management through an interactive visual analytics system that can answer "what" and "why" about fruit-growing activities. Thus, the prototype has the potential to go beyond the traditional ways of organizing data by creating an advanced information system enabled to manage heterogeneous data sources and to provide a framework for more collaborative scientific data analysis. This study unites various interdisciplinary aspects and, in particular: Big Data analytics in the agricultural sector and visual methods; thus, the findings will contribute to the EU priority program in digital transformation in the European agricultural sector.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 894215.</p>


Author(s):  
Carson K. Leung ◽  
Christopher L. Carmichael ◽  
Yaroslav Hayduk ◽  
Fan Jiang ◽  
Vadim V. Kononov ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Konstantinos F. Xylogiannopoulos ◽  
Panagiotis Karampelas ◽  
Reda Alhajj

Abstract Background The first half of 2020 has been marked as the era of COVID-19 pandemic which affected the world globally in almost every aspect of the daily life from societal to economical. To prevent the spread of COVID-19, countries have implemented diverse policies regarding Non-Pharmaceutical Intervention (NPI) measures. This is because in the first stage countries had limited knowledge about the virus and its contagiousness. Also, there was no effective medication or vaccines. This paper studies the effectiveness of the implemented policies and measures against the deaths attributed to the virus between January and May 2020. Methods Data from the European Centre for Disease Prevention and Control regarding the identified cases and deaths of COVID-19 from 48 countries have been used. Additionally, data concerning the NPI measures related policies implemented by the 48 countries and the capacity of their health care systems was collected manually from their national gazettes and official institutes. Data mining, time series analysis, pattern detection, machine learning, clustering methods and visual analytics techniques have been applied to analyze the collected data and discover possible relationships between the implemented NPIs and COVID-19 spread and mortality. Further, we recorded and analyzed the responses of the countries against COVID-19 pandemic, mainly in urban areas which are over-populated and accordingly COVID-19 has the potential to spread easier among humans. Results The data mining and clustering analysis of the collected data showed that the implementation of the NPI measures before the first death case seems to be very effective in controlling the spread of the disease. In other words, delaying the implementation of the NPI measures to after the first death case has practically little effect on limiting the spread of the disease. The success of implementing the NPI measures further depends on the way each government monitored their application. Countries with stricter policing of the measures seems to be more effective in controlling the transmission of the disease. Conclusions The conducted comparative data mining study provides insights regarding the correlation between the early implementation of the NPI measures and controlling COVID-19 contagiousness and mortality. We reported a number of useful observations that could be very helpful to the decision makers or epidemiologists regarding the rapid implementation and monitoring of the NPI measures in case of a future wave of COVID-19 or to deal with other unknown infectious pandemics. Regardless, after the first wave of COVID-19, most countries have decided to lift the restrictions and return to normal. This has resulted in a severe second wave in some countries, a situation which requires re-evaluating the whole process and inspiring lessons for the future.


Author(s):  
L. Gabrielli ◽  
M. Rossi ◽  
F. Giannotti ◽  
D. Fadda ◽  
S. Rinzivillo

<p><strong>Abstract.</strong> The new data sources give the possibility to answer analytically the questions that arise from mobility manager. The process of transforming raw data into knowledge is very complex, and it is necessary to provide metaphors of visualizations that are understandable to decision makers. Here, we propose an analytical platform that extracts information on the mobility of individuals from mobile phone by applying Data Mining methodologies. The main results highlighted here are both technical and methodological. First, communicating information through visual analytics techniques facilitates understanding of information to those who have no specific technical or domain knowledge. Secondly, the API system guarantees the ability to export aggregates according to the granularity required, enabling other actors to produce new services based on the extracted models. For the future, we expect to extend the platform by inserting other layers. For example, a layer for measuring the sustainability index of a territory, such as the ability of public transport to attract private mobility or the index that measures how many private vehicle trips can be converted into electrical mobility.</p>


Sign in / Sign up

Export Citation Format

Share Document