Managing Flood Risks Using Nature-Based Solutions in Nouakchott, Mauritania

Author(s):  
Ahmed Senhoury ◽  
Abdeljelil Niang ◽  
Bachir Diouf ◽  
Yves-François Thomas
Keyword(s):  
2013 ◽  
Vol 310 ◽  
pp. 230 ◽  
Author(s):  
Michael D. Dettinger ◽  
Tapash Das ◽  
Daniel R. Cayan ◽  
Theresa Carpenter
Keyword(s):  

2009 ◽  
Vol 9 (6) ◽  
pp. 1931-1940 ◽  
Author(s):  
T. Martens ◽  
H. Garrelts ◽  
H. Grunenberg ◽  
H. Lange

Abstract. The likely manifestations of climate change like flood hazards are prominent topics in public communication. This can be shown by media analysis and questionnaire data. However, in the case of flood risks an information gap remains resulting in misinformed citizens who probably will not perform the necessary protective actions when an emergency occurs. This paper examines more closely a newly developed approach to flood risk communication that takes the heterogeneity of citizens into account and aims to close this gap. The heterogeneity is analysed on the meso level regarding differences in residential situation as well as on the micro level with respect to risk perception and protective actions. Using the city of Bremen as a case study, empirical data from n=831 respondents were used to identify Action Types representing different states of readiness for protective actions in view of flood risks. These subpopulations can be provided with specific information to meet their heterogeneous needs for risk communication. A prototype of a computer-based information system is described that can produce and pass on such tailored information. However, such an approach to risk communication has to be complemented by meso level analysis which takes the social diversity of subpopulations into account. Social vulnerability is the crucial concept for understanding the distribution of resources and capacities among different social groups. We therefore recommend putting forums and organisations into place that can mediate between the state and its citizens.


2004 ◽  
Vol 21 ◽  
pp. 335-340
Author(s):  
Kiyomine TERUMOTO ◽  
Teruko SATO ◽  
Teniki FUKUZONO ◽  
Saburo IKEDA

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1470 ◽  
Author(s):  
Yuqin Gao ◽  
Dongdong Wang ◽  
Zhenxing Zhang ◽  
Zhenzhen Ma ◽  
Zichen Guo ◽  
...  

Urban agglomeration polders (UAPs) are often used to control flooding in eastern China. The impacts of UAPs on individual flood events have been extensively examined, but how flood risks are influenced by UAPs is much less examined. This study aimed to explore a three-dimensional joint distribution of annual flood volume, peak flow and water level to examine UAPs’ impact on flood risks based on hydrological simulations. The dependence between pairwise hydrological characteristics are measured by rank correlation coefficients and graphs. An Archimedean Copula is applied to model the dependence structure. This approach is applied to the Qinhuai River Basin where UAPs are used proactively for flood control. The result shows that the Frank Copula can better represent the dependence structure in the Qinhuai River Basin. UAPs increase risks of individual flood characteristics and integrated risks. UAPs have a relatively greater impact on water level than the other two flood characteristics. It is noted that the impact on flood risk levels off for greater floods.


2014 ◽  
Vol 2 (2) ◽  
pp. 1637-1670 ◽  
Author(s):  
K. M. de Bruijn ◽  
F. L. M. Diermanse ◽  
J. V. L. Beckers

Abstract. This paper discusses the new method developed to analyse flood risks in river deltas. Risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and since the effect of upstream breaches on downstream water levels and flood risks must be taken into account. A Monte Carlo based flood risk analysis framework for policy making was developed, which considers both storm surges and river flood waves and includes hydrodynamic interaction effects on flood risks. It was applied to analyse societal flood fatality risks (the probability of events with more than N fatalities) in the Rhine–Meuse delta.


Sign in / Sign up

Export Citation Format

Share Document