2015 ◽  
Vol 22 (s1) ◽  
pp. 75-81 ◽  
Author(s):  
Miao Chen ◽  
Duanfeng Han

Abstract In order to enhance the authenticity and accuracy simulation of passengers’ evacuation in ships, a new multi-grid model is proposed on the basis of cellular automata theory. By finer lattice the multi-grid model could enhance the continuity of passengers’ track and the precision of boundary’s qualification compared with traditional cellular automata model. Attraction, repulsion and friction are also quantized in the multi-grid model to present the impact of interaction force among pedestrians. Furthermore, crowd’s evacuation simulated by traditional cellular automata and multi-grid model in single exit room and typical cabin environment have been taken as examples to analyze crowd’s motion laws. It is found that the laws of passengers’ evacuation simulated by the two models are similar, and the simulation authenticity and accuracy is enhanced by the multi-grid model.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Yun Zou ◽  
Xiaobo Qu

Purpose Freeway work zones have been traffic bottlenecks that lead to a series of problems, including long travel time, high-speed variation, driver’s dissatisfaction and traffic congestion. This research aims to develop a collaborative component of connected and automated vehicles (CAVs) to alleviate negative effects caused by work zones. Design/methodology/approach The proposed cooperative component is incorporated in a cellular automata model to examine how and to what scale CAVs can help in improving traffic operations. Findings Simulation results show that, with the proposed component and penetration of CAVs, the average performances (travel time, safety and emission) can all be improved and the stochasticity of performances will be minimized too. Originality/value To the best of the authors’ knowledge, this is the first research that develops a cooperative mechanism of CAVs to improve work zone performance.


2007 ◽  
Vol 34 (4) ◽  
pp. 708-724 ◽  
Author(s):  
Daniel Stevens ◽  
Suzana Dragićević

This study proposes an alternative cellular automata (CA) model, which relaxes the traditional CA regular square grid and synchronous growth, and is designed for representations of land-use change in rural-urban fringe settings. The model uses high-resolution spatial data in the form of irregularly sized and shaped land parcels, and incorporates synchronous and asynchronous development in order to model more realistically land-use change at the land parcel scale. The model allows urban planners and other stakeholders to evaluate how different subdivision designs will influence development under varying population growth rates and buyer preferences. A model prototype has been developed in a common desktop GIS and applied to a rapidly developing area of a midsized Canadian city.


2020 ◽  
Vol 1680 ◽  
pp. 012035
Author(s):  
A K Matolygin ◽  
N A Shalyapina ◽  
M L Gromov ◽  
S N Torgaev

Sign in / Sign up

Export Citation Format

Share Document