interaction force
Recently Published Documents


TOTAL DOCUMENTS

723
(FIVE YEARS 208)

H-INDEX

37
(FIVE YEARS 6)

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Guan-Yang Liu ◽  
Yi Wang ◽  
Chao Huang ◽  
Chen Guan ◽  
Dong-Tao Ma ◽  
...  

The goal of haptic feedback in robotic teleoperation is to enable users to accurately feel the interaction force measured at the slave side and precisely understand what is happening in the slave environment. The accuracy of the feedback force describing the error between the actual feedback force felt by a user at the master side and the measured interaction force at the slave side is the key performance indicator for haptic display in robotic teleoperation. In this paper, we evaluate the haptic feedback accuracy in robotic teleoperation via experimental method. A special interface iHandle and two haptic devices, iGrasp-T and iGrasp-R, designed for robotic teleoperation are developed for experimental evaluation. The device iHandle integrates a high-performance force sensor and a micro attitude and heading reference system which can be used to identify human upper limb motor abilities, such as posture maintenance and force application. When a user is asked to grasp the iHandle and maintain a fixed position and posture, the fluctuation value of hand posture is measured to be between 2 and 8 degrees. Based on the experimental results, human hand tremble as input noise sensed by the haptic device is found to be a major reason that results in the noise of output force from haptic device if the spring-damping model is used to render feedback force. Therefore, haptic rendering algorithms should be independent of hand motion information to avoid input noise from human hand to the haptic control loop in teleoperation. Moreover, the iHandle can be fixed at the end effector of haptic devices; iGrasp-T or iGrasp-R, to measure the output force/torque from iGrasp-T or iGrasp-Rand to the user. Experimental results show that the accuracy of the output force from haptic device iGrasp-T is approximately 0.92 N, and using the force sensor in the iHandle can compensate for the output force inaccuracy of device iGrasp-T to 0.1 N. Using a force sensor as the feedback link to form a closed-loop feedback force control system is an effective way to improve the accuracy of feedback force and guarantee high-fidelity of feedback forces at the master side in robotic teleoperation.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Bin Liu ◽  
Meng Wang ◽  
Kaihan Yang ◽  
Guangchao Li ◽  
Zhou Shi

In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO2 was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO2 were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO2 pre-oxidation at low doses (1–2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO2 pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO2 oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO2, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO2 pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.


Biophysica ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 34-58
Author(s):  
Kuanpo Lin ◽  
Robert J. Asaro

Nascent adhesions (NAs) are a general precursor to the formation of focal adhesions (FAs) that provide a fundamental mechanism for cell adhesion that is, in turn, involved in cell proliferation, migration, and mechanotransduction. Nascent adhesions form when cells come into contact with substrates at all rigidities and generally involve the clustering of ligated integrins that may recruit un-ligated integrins. Nascent adhesions tend to take on characteristic sizes in the range of O(100nm–150nm) in diameter and tend to contain integrin numbers of O(20–60). The flexible, adaptable model we present provides and clear explanation of how these conserved cluster features come about. Our model is based on the interaction among ligated and un-ligated integrins that arise due to deformations that are induced in the cell membrane-cell glycocalyx and substrate system due to integrin activation and ligation. This model produces a clearly based interaction potential, and from it an explicit interaction force among integrins, that our stochastic diffusion-interaction simulations then show will produce nascent clusters with experimentally observed characteristics. Our simulations reveal effects of various key parameters related to integrin activation and ligation as well as some unexpected and previously unappreciated effects of parameters including integrin mobility and substrate rigidity. Moreover, the model’s structure is such that refinements are readily incorporated and specific suggestions are made as to what is required for further progress in understanding nascent clustering and the development of mature focal adhesions in a truly predictive manner.


2022 ◽  
Vol 64 (2) ◽  
pp. 167
Author(s):  
А.И. Подливаев ◽  
И.А. Руднев

On the basis of the critical state model, the interaction force of a pair of magnetic lines, which are sets of magnetized stacks of second-generation HTSC tapes, is calculated. The modes of magnetization of interacting rulers by an external magnetic field and the origin of the magnetization reversal of the stacks of tapes during multiple cycles of approaching - moving the rulers away from each other are considered. The force of interaction of the rulers is determined depending on the distance between them and the number of the cycle.


2021 ◽  
Vol 12 (1) ◽  
pp. 375
Author(s):  
Jung-Youl Choi ◽  
Dong-Ryong Park ◽  
Jee-Seung Chung ◽  
Sun-Hee Kim

This study investigates a load-based, track-irregularity-analysis technique for ballasted tracks on a serviced railway line with respect to excavation work conducted in adjacent sites. A numerical analysis and field measurements (railbed-settlement-monitoring sensor, track-geometry-measurement system, wheel-load measurements) were analyzed comparatively to demonstrate the correlation between the track irregularities and the Wheel-Rail interaction force. In this way, we highlight the necessity for load-based track-irregularity-management methods. The analyzed results show that the maximum dynamic wheel load was measured in the range of approximately 10 m before and after the location where the maximum track irregularities occurred, and that even if the maintenance criteria of track irregularities were satisfied, the design dynamic wheel load could still be exceeded depending on the train speed, thus indicating that track damage can be caused by the impact load.


2021 ◽  
pp. 333-344 ◽  
Author(s):  
Shengsheng Wang ◽  
Pan Chen ◽  
Jiangtao Ji ◽  
Mengqing Lu

In order to solve the problems of low efficiency of artificial harvesting method and high breakage rate and undepurated rate of traditional threshing method, a new flexible threshing device of Chinese cabbage seeds was designed, which was composed of flexible round head nail teeth and circular tube concave plate. Hertz contact collision theory was used to analyze and determine the structural parameters of the new threshing unit. The interaction force of different threshing elements materials were analyzed by using EDEM. The feasibility of the flexible threshing unit was verified by the comparison test of the distribution of threshed mixture. Finally, the orthogonal test was carried out to study the influence of the movement parameters of each structure on the cleaning rate and the rate of undepurated, and the weight matrix method was used to optimize it. The results indicate that under the condition the rotating speed of the threshing cylinder 750 rpm, the concave clearance 20 mm, and the feeding rate 1.4 kg/s, the threshing performance of the flexible threshing unit was the best. At this time, the breaking rate was 0.064%, and the un-threshing rate was 0.67%, which both met the relevant industry standards.


Author(s):  
G Lakshmi Srinivas ◽  
Arshad Javed

The optimal topology and its performance in dynamic loading situations result in discontinue function corresponding to the input factors such as volume fraction, thickness, material property, and loading conditions. In a realist scenario, the performance prediction becomes erroneous and challenging for the components under dynamic loading conditions with uncertainties. The conventional closed-form deterministic approaches are complicated for these problems. Here, a method is presented to establish the relative influence and function relationship of the input factors with the performance values, including controllable and non-controllable uncertainties. The design of experiment approach is used to apply full factorial design with Taguchi’s orthogonal array; performances of the optimal topologies are considered responses. The non-uniform topology generation method is applied based on the deflection threshold value to generate topologies for dynamic conditions. A dynamic model of the manipulator-link is developed to apply boundary conditions and provide performance values: compliance, deflection, Stress, and energy consumption values. Statistical techniques such as the analysis-of-mean (ANOM), analysis-of-variance (ANOVA), signal-to-noise-ratio (SNR), and mean performance values are employed to observe the significance of input factors and generate equivalent preformation relation. From ANOM and ANOVA, all input parameters show mutual interaction; force is observed as the most significant factor. From SNR values, experimental combination number 9,9,6,1 is observed as the most robust for compliance (21.13), deflection (43.93), Stress (−16.64), and energy consumption (12.05). Similarly, at the same combinations, the mean performance values are minimum and coefficient of determination (R2) percentages of the model are 94.64%, 96.93%, 73.69%, and 95.14%.


2021 ◽  
Author(s):  
Andrey Gribkov

This article presents the results of testing the hypothesis of the dependence of gravity on the velocity of motion of bodies. The numerical simulation clearly confirmed the correspondence of the calculated and observed values of the precession of orbit pericentres in binary systems including pulsars, as well as planets of the solar system. Based on the revealed dependence of the gravitational force on the velocity, the article describes a new effect of the precession of the centres of binary systems, which should be found as a result of further practical research.


Sign in / Sign up

Export Citation Format

Share Document