Dynamic Control of Traffic Lights

Author(s):  
Rene Haijema ◽  
Eligius M. T. Hendrix ◽  
Jan van der Wal
2008 ◽  
Vol 22 (4) ◽  
pp. 587-602 ◽  
Author(s):  
René Haijema ◽  
Jan van der Wal

This article presents a novel approach for the dynamic control of a signalized intersection. At the intersection, there is a number of arrival flows of cars, each having a single queue (lane). The set of all flows is partitioned into disjoint combinations of nonconflicting flows that will receive green together. The dynamic control of the traffic lights is based on the numbers of cars waiting in the queues. The problem concerning when to switch (and which combination to serve next) is modeled as a Markovian decision process in discrete time. For large intersections (i.e., intersections with a large number of flows), the number of states becomes tremendously large, prohibiting straightforward optimization using value iteration or policy iteration. Starting from an optimal (or nearly optimal) fixed-cycle strategy, a one-step policy improvement is proposed that is easy to compute and is shown to give a close to optimal strategy for the dynamic problem.


2018 ◽  
Author(s):  
George Symeonidis ◽  
Peter P. Groumpos ◽  
Evangelos Dermatas

2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Ji-hua Hu ◽  
Jia-xian Liang

Interstation travel speed is an important indicator of the running state of hybrid Bus Rapid Transit and passenger experience. Due to the influence of road traffic, traffic lights and other factors, the interstation travel speeds are often some kind of multi-peak and it is difficult to use a single distribution to model them. In this paper, a Gaussian mixture model charactizing the interstation travel speed of hybrid BRT under a Bayesian framework is established. The parameters of the model are inferred using the Reversible-Jump Markov Chain Monte Carlo approach (RJMCMC), including the number of model components and the weight, mean and variance of each component. Then the model is applied to Guangzhou BRT, a kind of hybrid BRT. From the results, it can be observed that the model can very effectively describe the heterogeneous speed data among different inter-stations, and provide richer information usually not available from the traditional models, and the model also produces an excellent fit to each multimodal speed distribution curve of the inter-stations. The causes of different speed distribution can be identified through investigating the Internet map of GBRT, they are big road traffic and long traffic lights respectively, which always contribute to a main road crossing. So, the BRT lane should be elevated through the main road to decrease the complexity of the running state.


2014 ◽  
Vol 1 ◽  
pp. 356-359
Author(s):  
Yoshinori Tanaka ◽  
Takashi Asano ◽  
Susumu Noda

1989 ◽  
Author(s):  
Tom T. Hartley ◽  
Alex DeAbreu-Garcia

2020 ◽  
Vol 16 (2) ◽  
pp. 214
Author(s):  
Wang Yong ◽  
Liu SanMing ◽  
Li Jun ◽  
Cheng Xiangyu ◽  
Zhou Wan

Sign in / Sign up

Export Citation Format

Share Document