scholarly journals Combining Stacked Denoising Autoencoders and Random Forests for Face Detection

Author(s):  
Jingjing Deng ◽  
Xianghua Xie ◽  
Michael Edwards
2010 ◽  
Vol 130 (11) ◽  
pp. 2031-2038
Author(s):  
Kohki Abiko ◽  
Hironobu Fukai ◽  
Yasue Mitsukura ◽  
Minoru Fukumi ◽  
Masahiro Tanaka
Keyword(s):  

2020 ◽  
Vol 64 (4) ◽  
pp. 40404-1-40404-16
Author(s):  
I.-J. Ding ◽  
C.-M. Ruan

Abstract With rapid developments in techniques related to the internet of things, smart service applications such as voice-command-based speech recognition and smart care applications such as context-aware-based emotion recognition will gain much attention and potentially be a requirement in smart home or office environments. In such intelligence applications, identity recognition of the specific member in indoor spaces will be a crucial issue. In this study, a combined audio-visual identity recognition approach was developed. In this approach, visual information obtained from face detection was incorporated into acoustic Gaussian likelihood calculations for constructing speaker classification trees to significantly enhance the Gaussian mixture model (GMM)-based speaker recognition method. This study considered the privacy of the monitored person and reduced the degree of surveillance. Moreover, the popular Kinect sensor device containing a microphone array was adopted to obtain acoustic voice data from the person. The proposed audio-visual identity recognition approach deploys only two cameras in a specific indoor space for conveniently performing face detection and quickly determining the total number of people in the specific space. Such information pertaining to the number of people in the indoor space obtained using face detection was utilized to effectively regulate the accurate GMM speaker classification tree design. Two face-detection-regulated speaker classification tree schemes are presented for the GMM speaker recognition method in this study—the binary speaker classification tree (GMM-BT) and the non-binary speaker classification tree (GMM-NBT). The proposed GMM-BT and GMM-NBT methods achieve excellent identity recognition rates of 84.28% and 83%, respectively; both values are higher than the rate of the conventional GMM approach (80.5%). Moreover, as the extremely complex calculations of face recognition in general audio-visual speaker recognition tasks are not required, the proposed approach is rapid and efficient with only a slight increment of 0.051 s in the average recognition time.


Author(s):  
A. A. Sukhinov ◽  
◽  
G. B. Ostrobrod ◽  

2012 ◽  
Vol 7 (2) ◽  
pp. 10-18
Author(s):  
B. Mallikarjuna ◽  
◽  
K.V. Ramanaiah ◽  
P. Mohanaiah ◽  
V. Vijaya Kumar Reddy ◽  
...  

2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


2009 ◽  
Vol 29 (8) ◽  
pp. 2098-2100
Author(s):  
Shi-ming SUN ◽  
Qing PAN ◽  
You-fang JI

1997 ◽  
Author(s):  
Henry A. Rowley ◽  
Shumeet Baluja ◽  
Takeo Kanade

Sign in / Sign up

Export Citation Format

Share Document