CBO-Based TDR Approach for Wiring Network Diagnosis

Author(s):  
Hamza Boudjefdjouf ◽  
Francesco de Paulis ◽  
Houssem Bouchekara ◽  
Antonio Orlandi ◽  
Mostafa K. Smail
Keyword(s):  
2012 ◽  
Vol 142 (5) ◽  
pp. S-1004 ◽  
Author(s):  
Costin T. Streba ◽  
Dan Ionut Gheonea ◽  
Larisa D. Sandulescu ◽  
Liliana Streba ◽  
Tudorel Ciurea ◽  
...  

2012 ◽  
Vol 03 (04) ◽  
pp. 281-294 ◽  
Author(s):  
Thomas Djotio Ndié ◽  
Claude Tangha ◽  
Guy Bertrand Fopak

2014 ◽  
Vol 571-572 ◽  
pp. 201-204
Author(s):  
Jian Li Yu ◽  
Zhe Zhang

According to the characteristics of fault types of the transformer ,RBF neural network is used to diagnose transformer fault. The paper regards six gases as inputs of the neural network and establishes RBF neural network model which can diagnose six transformer faults: low temperature overheat, medium temperature overheat, high temperature overheat, low energy discharge, high energy discharge and partial discharge . The Matlab simulation studies show that transformer fault diagnosis model based on RBF neural network diagnosis for failure beyond the traditional three-ratio method. The rate of the transformer fault diagnosis accuracy reaches 91.67% which is also much higher than the traditional three ratio method.


Author(s):  
Ebenezer O. Olaniyi ◽  
Oyebade K. Oyedotun ◽  
Abdulkader Helwan ◽  
Khashman Adnan

Author(s):  
Francisco Javier García-Algarra ◽  
Pablo Arozarena-Llopis ◽  
Sergio García-Gómez ◽  
Álvaro Carrera-Barroso

2019 ◽  
Vol 12 (3) ◽  
pp. 1
Author(s):  
Takafumi Tanaka ◽  
Akira Hirano ◽  
Shoukei Kobayashi ◽  
Takuya Oda ◽  
Seiki Kuwabara ◽  
...  

2020 ◽  
Vol 38 (9) ◽  
pp. 2695-2702 ◽  
Author(s):  
Fumikazu Inuzuka ◽  
Takuya Oda ◽  
Takafumi Tanaka ◽  
Kei Kitamura ◽  
Seiki Kuwabara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document